In [ ]:
BATCH_SIZE = 128
EPOCHS = 10
training_images_file = 'gs://mnist-public/train-images-idx3-ubyte'
training_labels_file = 'gs://mnist-public/train-labels-idx1-ubyte'
validation_images_file = 'gs://mnist-public/t10k-images-idx3-ubyte'
validation_labels_file = 'gs://mnist-public/t10k-labels-idx1-ubyte'
In [ ]:
import os, re, math, json, shutil, pprint
import PIL.Image, PIL.ImageFont, PIL.ImageDraw
import IPython.display as display
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
print("Tensorflow version " + tf.__version__)
In [ ]:
#@title visualization utilities [RUN ME]
"""
This cell contains helper functions used for visualization
and downloads only. You can skip reading it. There is very
little useful Keras/Tensorflow code here.
"""
# Matplotlib config
plt.ioff()
plt.rc('image', cmap='gray_r')
plt.rc('grid', linewidth=1)
plt.rc('xtick', top=False, bottom=False, labelsize='large')
plt.rc('ytick', left=False, right=False, labelsize='large')
plt.rc('axes', facecolor='F8F8F8', titlesize="large", edgecolor='white')
plt.rc('text', color='a8151a')
plt.rc('figure', facecolor='F0F0F0', figsize=(16,9))
# Matplotlib fonts
MATPLOTLIB_FONT_DIR = os.path.join(os.path.dirname(plt.__file__), "mpl-data/fonts/ttf")
# pull a batch from the datasets. This code is not very nice, it gets much better in eager mode (TODO)
def dataset_to_numpy_util(training_dataset, validation_dataset, N):
# get one batch from each: 10000 validation digits, N training digits
batch_train_ds = training_dataset.unbatch().batch(N)
# eager execution: loop through datasets normally
if tf.executing_eagerly():
for validation_digits, validation_labels in validation_dataset:
validation_digits = validation_digits.numpy()
validation_labels = validation_labels.numpy()
break
for training_digits, training_labels in batch_train_ds:
training_digits = training_digits.numpy()
training_labels = training_labels.numpy()
break
else:
v_images, v_labels = validation_dataset.make_one_shot_iterator().get_next()
t_images, t_labels = batch_train_ds.make_one_shot_iterator().get_next()
# Run once, get one batch. Session.run returns numpy results
with tf.Session() as ses:
(validation_digits, validation_labels,
training_digits, training_labels) = ses.run([v_images, v_labels, t_images, t_labels])
# these were one-hot encoded in the dataset
validation_labels = np.argmax(validation_labels, axis=1)
training_labels = np.argmax(training_labels, axis=1)
return (training_digits, training_labels,
validation_digits, validation_labels)
# create digits from local fonts for testing
def create_digits_from_local_fonts(n):
font_labels = []
img = PIL.Image.new('LA', (28*n, 28), color = (0,255)) # format 'LA': black in channel 0, alpha in channel 1
font1 = PIL.ImageFont.truetype(os.path.join(MATPLOTLIB_FONT_DIR, 'DejaVuSansMono-Oblique.ttf'), 25)
font2 = PIL.ImageFont.truetype(os.path.join(MATPLOTLIB_FONT_DIR, 'STIXGeneral.ttf'), 25)
d = PIL.ImageDraw.Draw(img)
for i in range(n):
font_labels.append(i%10)
d.text((7+i*28,0 if i<10 else -4), str(i%10), fill=(255,255), font=font1 if i<10 else font2)
font_digits = np.array(img.getdata(), np.float32)[:,0] / 255.0 # black in channel 0, alpha in channel 1 (discarded)
font_digits = np.reshape(np.stack(np.split(np.reshape(font_digits, [28, 28*n]), n, axis=1), axis=0), [n, 28*28])
return font_digits, font_labels
# utility to display a row of digits with their predictions
def display_digits(digits, predictions, labels, title, n):
fig = plt.figure(figsize=(13,3))
digits = np.reshape(digits, [n, 28, 28])
digits = np.swapaxes(digits, 0, 1)
digits = np.reshape(digits, [28, 28*n])
plt.yticks([])
plt.xticks([28*x+14 for x in range(n)], predictions)
plt.grid(b=None)
for i,t in enumerate(plt.gca().xaxis.get_ticklabels()):
if predictions[i] != labels[i]: t.set_color('red') # bad predictions in red
plt.imshow(digits)
plt.grid(None)
plt.title(title)
display.display(fig)
# utility to display multiple rows of digits, sorted by unrecognized/recognized status
def display_top_unrecognized(digits, predictions, labels, n, lines):
idx = np.argsort(predictions==labels) # sort order: unrecognized first
for i in range(lines):
display_digits(digits[idx][i*n:(i+1)*n], predictions[idx][i*n:(i+1)*n], labels[idx][i*n:(i+1)*n],
"{} sample validation digits out of {} with bad predictions in red and sorted first".format(n*lines, len(digits)) if i==0 else "", n)
def plot_learning_rate(lr_func, epochs):
xx = np.arange(epochs+1, dtype=np.float)
y = [lr_decay(x) for x in xx]
fig, ax = plt.subplots(figsize=(9, 6))
ax.set_xlabel('epochs')
ax.set_title('Learning rate\ndecays from {:0.3g} to {:0.3g}'.format(y[0], y[-2]))
ax.minorticks_on()
ax.grid(True, which='major', axis='both', linestyle='-', linewidth=1)
ax.grid(True, which='minor', axis='both', linestyle=':', linewidth=0.5)
ax.step(xx,y, linewidth=3, where='post')
display.display(fig)
class PlotTraining(tf.keras.callbacks.Callback):
def __init__(self, sample_rate=1, zoom=1):
self.sample_rate = sample_rate
self.step = 0
self.zoom = zoom
self.steps_per_epoch = 60000//BATCH_SIZE
def on_train_begin(self, logs={}):
self.batch_history = {}
self.batch_step = []
self.epoch_history = {}
self.epoch_step = []
self.fig, self.axes = plt.subplots(1, 2, figsize=(16, 7))
plt.ioff()
def on_batch_end(self, batch, logs={}):
if (batch % self.sample_rate) == 0:
self.batch_step.append(self.step)
for k,v in logs.items():
# do not log "batch" and "size" metrics that do not change
# do not log training accuracy "acc"
if k=='batch' or k=='size':# or k=='acc':
continue
self.batch_history.setdefault(k, []).append(v)
self.step += 1
def on_epoch_end(self, epoch, logs={}):
plt.close(self.fig)
self.axes[0].cla()
self.axes[1].cla()
self.axes[0].set_ylim(0, 1.2/self.zoom)
self.axes[1].set_ylim(1-1/self.zoom/2, 1+0.1/self.zoom/2)
self.epoch_step.append(self.step)
for k,v in logs.items():
# only log validation metrics
if not k.startswith('val_'):
continue
self.epoch_history.setdefault(k, []).append(v)
display.clear_output(wait=True)
for k,v in self.batch_history.items():
self.axes[0 if k.endswith('loss') else 1].plot(np.array(self.batch_step) / self.steps_per_epoch, v, label=k)
for k,v in self.epoch_history.items():
self.axes[0 if k.endswith('loss') else 1].plot(np.array(self.epoch_step) / self.steps_per_epoch, v, label=k, linewidth=3)
self.axes[0].legend()
self.axes[1].legend()
self.axes[0].set_xlabel('epochs')
self.axes[1].set_xlabel('epochs')
self.axes[0].minorticks_on()
self.axes[0].grid(True, which='major', axis='both', linestyle='-', linewidth=1)
self.axes[0].grid(True, which='minor', axis='both', linestyle=':', linewidth=0.5)
self.axes[1].minorticks_on()
self.axes[1].grid(True, which='major', axis='both', linestyle='-', linewidth=1)
self.axes[1].grid(True, which='minor', axis='both', linestyle=':', linewidth=0.5)
display.display(self.fig)
Please read the best practices for building input pipelines with tf.data.Dataset
In [ ]:
AUTO = tf.data.experimental.AUTOTUNE
def read_label(tf_bytestring):
label = tf.io.decode_raw(tf_bytestring, tf.uint8)
label = tf.reshape(label, [])
label = tf.one_hot(label, 10)
return label
def read_image(tf_bytestring):
image = tf.io.decode_raw(tf_bytestring, tf.uint8)
image = tf.cast(image, tf.float32)/256.0
image = tf.reshape(image, [28*28])
return image
def load_dataset(image_file, label_file):
imagedataset = tf.data.FixedLengthRecordDataset(image_file, 28*28, header_bytes=16)
imagedataset = imagedataset.map(read_image, num_parallel_calls=16)
labelsdataset = tf.data.FixedLengthRecordDataset(label_file, 1, header_bytes=8)
labelsdataset = labelsdataset.map(read_label, num_parallel_calls=16)
dataset = tf.data.Dataset.zip((imagedataset, labelsdataset))
return dataset
def get_training_dataset(image_file, label_file, batch_size):
dataset = load_dataset(image_file, label_file)
dataset = dataset.cache() # this small dataset can be entirely cached in RAM, for TPU this is important to get good performance from such a small dataset
dataset = dataset.shuffle(5000, reshuffle_each_iteration=True)
dataset = dataset.repeat() # Mandatory for Keras for now
dataset = dataset.batch(batch_size, drop_remainder=True) # drop_remainder is important on TPU, batch size must be fixed
dataset = dataset.prefetch(AUTO) # fetch next batches while training on the current one (-1: autotune prefetch buffer size)
return dataset
def get_validation_dataset(image_file, label_file):
dataset = load_dataset(image_file, label_file)
dataset = dataset.cache() # this small dataset can be entirely cached in RAM, for TPU this is important to get good performance from such a small dataset
dataset = dataset.batch(10000, drop_remainder=True) # 10000 items in eval dataset, all in one batch
dataset = dataset.repeat() # Mandatory for Keras for now
return dataset
# instantiate the datasets
training_dataset = get_training_dataset(training_images_file, training_labels_file, BATCH_SIZE)
validation_dataset = get_validation_dataset(validation_images_file, validation_labels_file)
# For TPU, we will need a function that returns the dataset
training_input_fn = lambda: get_training_dataset(training_images_file, training_labels_file, BATCH_SIZE)
validation_input_fn = lambda: get_validation_dataset(validation_images_file, validation_labels_file)
In [ ]:
N = 24
(training_digits, training_labels,
validation_digits, validation_labels) = dataset_to_numpy_util(training_dataset, validation_dataset, N)
display_digits(training_digits, training_labels, training_labels, "training digits and their labels", N)
display_digits(validation_digits[:N], validation_labels[:N], validation_labels[:N], "validation digits and their labels", N)
font_digits, font_labels = create_digits_from_local_fonts(N)
If you are not sure what cross-entropy, dropout, softmax or batch-normalization mean, head here for a crash-course: Tensorflow and deep learning without a PhD
In [ ]:
model = tf.keras.Sequential(
[
tf.keras.layers.Input(shape=(28*28,)),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=['accuracy'])
# print model layers
model.summary()
# utility callback that displays training curves
plot_training = PlotTraining(sample_rate=10, zoom=1)
In [ ]:
steps_per_epoch = 60000//BATCH_SIZE # 60,000 items in this dataset
print("Steps per epoch: ", steps_per_epoch)
history = model.fit(training_dataset, steps_per_epoch=steps_per_epoch, epochs=EPOCHS,
validation_data=validation_dataset, validation_steps=1, callbacks=[plot_training])
In [ ]:
# recognize digits from local fonts
probabilities = model.predict(font_digits, steps=1)
predicted_labels = np.argmax(probabilities, axis=1)
display_digits(font_digits, predicted_labels, font_labels, "predictions from local fonts (bad predictions in red)", N)
# recognize validation digits
probabilities = model.predict(validation_digits, steps=1)
predicted_labels = np.argmax(probabilities, axis=1)
display_top_unrecognized(validation_digits, predicted_labels, validation_labels, N, 7)
author: Martin Gorner
twitter: @martin_gorner
Copyright 2019 Google LLC
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
This is not an official Google product but sample code provided for an educational purpose
In [ ]: