Let's train this model on TPU. It's worth it.

Imports


In [1]:
import os, sys, math
import numpy as np
from matplotlib import pyplot as plt
if 'google.colab' in sys.modules: # Colab-only Tensorflow version selector
  %tensorflow_version 2.x
import tensorflow as tf
print("Tensorflow version " + tf.__version__)
AUTO = tf.data.experimental.AUTOTUNE


TensorFlow 2.x selected.
Tensorflow version 2.1.0-rc1

TPU detection


In [2]:
# Detect hardware
try:
  tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # TPU detection
except ValueError:
  tpu = None
  gpus = tf.config.experimental.list_logical_devices("GPU")
    
# Select appropriate distribution strategy for hardware
if tpu:
  tf.config.experimental_connect_to_cluster(tpu)
  tf.tpu.experimental.initialize_tpu_system(tpu)
  strategy = tf.distribute.experimental.TPUStrategy(tpu)
  print('Running on TPU ', tpu.master())  
elif len(gpus) > 0:
  strategy = tf.distribute.MirroredStrategy(gpus) # this works for 1 to multiple GPUs
  print('Running on ', len(gpus), ' GPU(s) ')
else:
  strategy = tf.distribute.get_strategy() # default strategy that works on CPU and single GPU
  print('Running on CPU')

# How many accelerators do we have ?
print("Number of accelerators: ", strategy.num_replicas_in_sync)


INFO:tensorflow:Initializing the TPU system: 10.38.149.226:8470
INFO:tensorflow:Initializing the TPU system: 10.38.149.226:8470
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
Running on TPU  grpc://10.38.149.226:8470
Number of accelerators:  8

Configuration


In [3]:
GCS_PATTERN = 'gs://flowers-public/tfrecords-jpeg-192x192-2/*.tfrec'
IMAGE_SIZE = [192, 192]

if tpu:
  BATCH_SIZE = 16*strategy.num_replicas_in_sync  # A TPU has 8 cores so this will be 128
else:
  BATCH_SIZE = 32  # On Colab/GPU, a higher batch size does not help and sometimes does not fit on the GPU (OOM)

VALIDATION_SPLIT = 0.19
CLASSES = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] # do not change, maps to the labels in the data (folder names)

# splitting data files between training and validation
filenames = tf.io.gfile.glob(GCS_PATTERN)
split = int(len(filenames) * VALIDATION_SPLIT)
training_filenames = filenames[split:]
validation_filenames = filenames[:split]
print("Pattern matches {} data files. Splitting dataset into {} training files and {} validation files".format(len(filenames), len(training_filenames), len(validation_filenames)))
validation_steps = int(3670 // len(filenames) * len(validation_filenames)) // BATCH_SIZE
steps_per_epoch = int(3670 // len(filenames) * len(training_filenames)) // BATCH_SIZE
print("With a batch size of {}, there will be {} batches per training epoch and {} batch(es) per validation run.".format(BATCH_SIZE, steps_per_epoch, validation_steps))


Pattern matches 16 data files. Splitting dataset into 13 training files and 3 validation files
With a batch size of 128, there will be 23 batches per training epoch and 5 batch(es) per validation run.

In [0]:
#@title display utilities [RUN ME]

def dataset_to_numpy_util(dataset, N):
  dataset = dataset.batch(N)
  
  # In eager mode, iterate in the Datset directly.
  for images, labels in dataset:
    numpy_images = images.numpy()
    numpy_labels = labels.numpy()
    break;

  return numpy_images, numpy_labels

def title_from_label_and_target(label, correct_label):
  label = np.argmax(label, axis=-1)  # one-hot to class number
  correct_label = np.argmax(correct_label, axis=-1) # one-hot to class number
  correct = (label == correct_label)
  return "{} [{}{}{}]".format(CLASSES[label], str(correct), ', shoud be ' if not correct else '',
                              CLASSES[correct_label] if not correct else ''), correct

def display_one_flower(image, title, subplot, red=False):
    plt.subplot(subplot)
    plt.axis('off')
    plt.imshow(image)
    plt.title(title, fontsize=16, color='red' if red else 'black')
    return subplot+1
  
def display_9_images_from_dataset(dataset):
  subplot=331
  plt.figure(figsize=(13,13))
  images, labels = dataset_to_numpy_util(dataset, 9)
  for i, image in enumerate(images):
    title = CLASSES[np.argmax(labels[i], axis=-1)]
    subplot = display_one_flower(image, title, subplot)
    if i >= 8:
      break;
              
  plt.tight_layout()
  plt.subplots_adjust(wspace=0.1, hspace=0.1)
  plt.show()
  
def display_9_images_with_predictions(images, predictions, labels):
  subplot=331
  plt.figure(figsize=(13,13))
  for i, image in enumerate(images):
    title, correct = title_from_label_and_target(predictions[i], labels[i])
    subplot = display_one_flower(image, title, subplot, not correct)
    if i >= 8:
      break;
              
  plt.tight_layout()
  plt.subplots_adjust(wspace=0.1, hspace=0.1)
  plt.show()
  
def display_training_curves(training, validation, title, subplot):
  if subplot%10==1: # set up the subplots on the first call
    plt.subplots(figsize=(10,10), facecolor='#F0F0F0')
    plt.tight_layout()
  ax = plt.subplot(subplot)
  ax.set_facecolor('#F8F8F8')
  ax.plot(training)
  ax.plot(validation)
  ax.set_title('model '+ title)
  ax.set_ylabel(title)
  ax.set_xlabel('epoch')
  ax.legend(['train', 'valid.'])

Read images and labels from TFRecords


In [0]:
def read_tfrecord(example):
    features = {
        "image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring
        "class": tf.io.FixedLenFeature([], tf.int64),  # shape [] means scalar
        "one_hot_class": tf.io.VarLenFeature(tf.float32),
    }
    example = tf.io.parse_single_example(example, features)
    image = tf.image.decode_jpeg(example['image'], channels=3)
    image = tf.cast(image, tf.float32) / 255.0  # convert image to floats in [0, 1] range
    image = tf.reshape(image, [*IMAGE_SIZE, 3]) # explicit size will be needed for TPU
    one_hot_class = tf.sparse.to_dense(example['one_hot_class'])
    one_hot_class = tf.reshape(one_hot_class, [5])
    return image, one_hot_class

def load_dataset(filenames):
  # read from TFRecords. For optimal performance, read from multiple
  # TFRecord files at once and set the option experimental_deterministic = False
  # to allow order-altering optimizations.

  option_no_order = tf.data.Options()
  option_no_order.experimental_deterministic = False

  dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
  dataset = dataset.with_options(option_no_order)
  dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTO)
  return dataset

In [8]:
display_9_images_from_dataset(load_dataset(training_filenames))


training and validation datasets


In [0]:
def get_batched_dataset(filenames, train=False):
  dataset = load_dataset(filenames)
  dataset = dataset.cache() # This dataset fits in RAM
  if train:
    # Best practices for Keras:
    # Training dataset: repeat then batch
    # Evaluation dataset: do not repeat
    dataset = dataset.repeat()
  dataset = dataset.batch(BATCH_SIZE)
  dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
  # should shuffle too but this dataset was well shuffled on disk already
  return dataset
  # source: Dataset performance guide: https://www.tensorflow.org/guide/performance/datasets

# instantiate the datasets
training_dataset = get_batched_dataset(training_filenames, train=True)
validation_dataset = get_batched_dataset(validation_filenames, train=False)

some_flowers, some_labels = dataset_to_numpy_util(load_dataset(validation_filenames), 160)

Model [WORK WAS REQUIRED HERE]


In [10]:
with strategy.scope(): # this line is all that is needed to run on TPU (or multi-GPU, ...)

  model = tf.keras.Sequential([
      tf.keras.layers.Conv2D(kernel_size=3, filters=16, padding='same', activation='relu', input_shape=[*IMAGE_SIZE, 3]),
      tf.keras.layers.Conv2D(kernel_size=3, filters=30, padding='same', activation='relu'),
      tf.keras.layers.MaxPooling2D(pool_size=2),
      tf.keras.layers.Conv2D(kernel_size=3, filters=60, padding='same', activation='relu'),
      tf.keras.layers.MaxPooling2D(pool_size=2),
      tf.keras.layers.Conv2D(kernel_size=3, filters=90, padding='same', activation='relu'),
      tf.keras.layers.MaxPooling2D(pool_size=2),
      tf.keras.layers.Conv2D(kernel_size=3, filters=110, padding='same', activation='relu'),
      tf.keras.layers.MaxPooling2D(pool_size=2),
      tf.keras.layers.Conv2D(kernel_size=3, filters=130, padding='same', activation='relu'),
      tf.keras.layers.Conv2D(kernel_size=1, filters=40, padding='same', activation='relu'),
      tf.keras.layers.GlobalAveragePooling2D(),
      tf.keras.layers.Dense(5, activation='softmax')
  ])

  model.compile(
    optimizer='adam',
    loss= 'categorical_crossentropy',
    metrics=['accuracy'])

  model.summary()


Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 192, 192, 16)      448       
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 192, 192, 30)      4350      
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 96, 96, 30)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 96, 96, 60)        16260     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 48, 48, 60)        0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 48, 48, 90)        48690     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 24, 24, 90)        0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 24, 24, 110)       89210     
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 110)       0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 12, 12, 130)       128830    
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 12, 12, 40)        5240      
_________________________________________________________________
global_average_pooling2d (Gl (None, 40)                0         
_________________________________________________________________
dense (Dense)                (None, 5)                 205       
=================================================================
Total params: 293,233
Trainable params: 293,233
Non-trainable params: 0
_________________________________________________________________

Training


In [11]:
EPOCHS = 20

history = model.fit(training_dataset, steps_per_epoch=steps_per_epoch, epochs=EPOCHS,
                    validation_data=validation_dataset)


Train for 23 steps
Epoch 1/20
23/23 [==============================] - 17s 747ms/step - loss: 1.5572 - accuracy: 0.2765 - val_loss: 1.4894 - val_accuracy: 0.3232
Epoch 2/20
23/23 [==============================] - 2s 69ms/step - loss: 1.3497 - accuracy: 0.3818 - val_loss: 1.2175 - val_accuracy: 0.4304
Epoch 3/20
23/23 [==============================] - 2s 76ms/step - loss: 1.1828 - accuracy: 0.4704 - val_loss: 1.1390 - val_accuracy: 0.4797
Epoch 4/20
23/23 [==============================] - 2s 67ms/step - loss: 1.1208 - accuracy: 0.5238 - val_loss: 1.1046 - val_accuracy: 0.5261
Epoch 5/20
23/23 [==============================] - 2s 68ms/step - loss: 1.0705 - accuracy: 0.5632 - val_loss: 1.0290 - val_accuracy: 0.5855
Epoch 6/20
23/23 [==============================] - 2s 67ms/step - loss: 1.0249 - accuracy: 0.5870 - val_loss: 1.0005 - val_accuracy: 0.5855
Epoch 7/20
23/23 [==============================] - 2s 67ms/step - loss: 0.9640 - accuracy: 0.6196 - val_loss: 0.9045 - val_accuracy: 0.6217
Epoch 8/20
23/23 [==============================] - 2s 66ms/step - loss: 0.9281 - accuracy: 0.6389 - val_loss: 0.8831 - val_accuracy: 0.6420
Epoch 9/20
23/23 [==============================] - 2s 69ms/step - loss: 0.8867 - accuracy: 0.6637 - val_loss: 0.8717 - val_accuracy: 0.6304
Epoch 10/20
23/23 [==============================] - 2s 68ms/step - loss: 0.8541 - accuracy: 0.6715 - val_loss: 0.8386 - val_accuracy: 0.6420
Epoch 11/20
23/23 [==============================] - 2s 68ms/step - loss: 0.8231 - accuracy: 0.6872 - val_loss: 0.8055 - val_accuracy: 0.6594
Epoch 12/20
23/23 [==============================] - 2s 67ms/step - loss: 0.8070 - accuracy: 0.6923 - val_loss: 0.7814 - val_accuracy: 0.6841
Epoch 13/20
23/23 [==============================] - 2s 67ms/step - loss: 0.7773 - accuracy: 0.7031 - val_loss: 0.7524 - val_accuracy: 0.6928
Epoch 14/20
23/23 [==============================] - 2s 68ms/step - loss: 0.7442 - accuracy: 0.7245 - val_loss: 0.7206 - val_accuracy: 0.7058
Epoch 15/20
23/23 [==============================] - 2s 70ms/step - loss: 0.7464 - accuracy: 0.7079 - val_loss: 0.6810 - val_accuracy: 0.7261
Epoch 16/20
23/23 [==============================] - 2s 68ms/step - loss: 0.7081 - accuracy: 0.7296 - val_loss: 0.6806 - val_accuracy: 0.7348
Epoch 17/20
23/23 [==============================] - 2s 67ms/step - loss: 0.6744 - accuracy: 0.7412 - val_loss: 0.6606 - val_accuracy: 0.7174
Epoch 18/20
23/23 [==============================] - 2s 70ms/step - loss: 0.6961 - accuracy: 0.7310 - val_loss: 0.7392 - val_accuracy: 0.6855
Epoch 19/20
23/23 [==============================] - 2s 68ms/step - loss: 0.6835 - accuracy: 0.7446 - val_loss: 0.6442 - val_accuracy: 0.7391
Epoch 20/20
23/23 [==============================] - 2s 67ms/step - loss: 0.6300 - accuracy: 0.7626 - val_loss: 0.6374 - val_accuracy: 0.7435

In [12]:
print(history.history.keys())
display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 211)
display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 212)


dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

Predictions


In [13]:
# randomize the input so that you can execute multiple times to change results
permutation = np.random.permutation(160)
some_flowers, some_labels = (some_flowers[permutation], some_labels[permutation])

predictions = model.predict(some_flowers, batch_size=16)
evaluations = model.evaluate(some_flowers, some_labels, batch_size=16)
  
print(np.array(CLASSES)[np.argmax(predictions, axis=-1)].tolist())
print('[val_loss, val_acc]', evaluations)


160/160 [==============================] - 2s 10ms/sample - loss: 0.6835 - accuracy: 0.7500
['dandelion', 'tulips', 'tulips', 'tulips', 'daisy', 'tulips', 'sunflowers', 'daisy', 'dandelion', 'dandelion', 'tulips', 'daisy', 'tulips', 'dandelion', 'tulips', 'daisy', 'tulips', 'dandelion', 'dandelion', 'tulips', 'daisy', 'sunflowers', 'sunflowers', 'daisy', 'sunflowers', 'tulips', 'sunflowers', 'daisy', 'dandelion', 'dandelion', 'tulips', 'tulips', 'tulips', 'daisy', 'daisy', 'roses', 'daisy', 'dandelion', 'daisy', 'daisy', 'dandelion', 'roses', 'roses', 'daisy', 'sunflowers', 'dandelion', 'daisy', 'roses', 'dandelion', 'tulips', 'sunflowers', 'roses', 'roses', 'daisy', 'sunflowers', 'tulips', 'tulips', 'roses', 'tulips', 'dandelion', 'tulips', 'dandelion', 'daisy', 'sunflowers', 'roses', 'dandelion', 'daisy', 'tulips', 'dandelion', 'tulips', 'dandelion', 'sunflowers', 'tulips', 'daisy', 'sunflowers', 'dandelion', 'dandelion', 'tulips', 'daisy', 'dandelion', 'daisy', 'sunflowers', 'sunflowers', 'roses', 'sunflowers', 'dandelion', 'dandelion', 'tulips', 'roses', 'roses', 'tulips', 'roses', 'roses', 'tulips', 'tulips', 'roses', 'dandelion', 'daisy', 'tulips', 'dandelion', 'dandelion', 'dandelion', 'sunflowers', 'dandelion', 'tulips', 'daisy', 'tulips', 'sunflowers', 'dandelion', 'dandelion', 'tulips', 'tulips', 'roses', 'tulips', 'sunflowers', 'daisy', 'tulips', 'dandelion', 'dandelion', 'dandelion', 'tulips', 'tulips', 'dandelion', 'daisy', 'daisy', 'tulips', 'tulips', 'daisy', 'roses', 'roses', 'tulips', 'dandelion', 'dandelion', 'daisy', 'daisy', 'daisy', 'dandelion', 'dandelion', 'sunflowers', 'sunflowers', 'roses', 'dandelion', 'dandelion', 'tulips', 'sunflowers', 'dandelion', 'roses', 'roses', 'dandelion', 'tulips', 'tulips', 'sunflowers', 'tulips', 'dandelion', 'tulips', 'daisy', 'sunflowers', 'tulips', 'sunflowers', 'dandelion']
[val_loss, val_acc] [0.6834901452064515, 0.75]

In [14]:
display_9_images_with_predictions(some_flowers, predictions, some_labels)


License


author: Martin Gorner
twitter: @martin_gorner


Copyright 2020 Google LLC

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.


This is not an official Google product but sample code provided for an educational purpose