Copyright 2018 Google LLC

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0  

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Reference:


In [ ]:
# Get the dependency .py files, if any.
! git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git
! cp cloudml-samples/tpu/templates/tpu_rewrite/* .

In [ ]:
import argparse
from functools import partial
import numpy as np
import os
import threading
import tensorflow as tf
from tensorflow.contrib.cluster_resolver import TPUClusterResolver

In [ ]:
def build_model(features):
    hidden = tf.layers.dense(features, 10, activation=tf.nn.relu)
    outputs = tf.layers.dense(hidden, 1)

    return outputs

In [ ]:
def fit_batch(features, labels):
    # inner function that specifies one step of calculation to be done on TPU.

    outputs = build_model(features)
    loss = tf.nn.l2_loss(outputs - labels)

    optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)

    # Wrap the optimizer
    optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)

    global_step = tf.train.get_or_create_global_step()
    train_op = optimizer.minimize(loss, global_step=global_step) 

    return global_step, loss, train_op

In [ ]:
def tpu_computation_with_infeed(batch_size, num_shards):
    # This function wrap around `fit_batch` and handles infeed/outfeed queues from the perspective of a TPU device.

    # The infeed queue is implicit and the tensors in it are not passed in as function arguments like in model_fn.
    features, labels = tf.contrib.tpu.infeed_dequeue_tuple(
        # the dtypes and shapes need to be consistent with what is fed into the infeed queue.
        dtypes=[tf.float32, tf.float32],
        shapes=[(batch_size // num_shards, 5), (batch_size // num_shards)]
    )

    global_step, loss, train_op = fit_batch(features, labels)

    # TPU functions must return zero-or more Tensor values followed by zero or more Operations.
    # The outfeed queue is also implicit.
    return tf.contrib.tpu.outfeed_enqueue_tuple((global_step, loss)), train_op

In [ ]:
def setup_feed(features, labels, num_shards):
    # This function handles infeed/outfeed queues from the perspective of the CPU.
    infeed_ops = []
    outfeed_ops = []

    infeed_batches = zip(tf.split(features, num_shards), tf.split(labels, num_shards))

    for i, batch in enumerate(infeed_batches):
        infeed_op = tf.contrib.tpu.infeed_enqueue_tuple(
            batch,
            [b.shape for b in batch],
            device_ordinal=i
        )
        infeed_ops.append(infeed_op)

        outfeed_op = tf.contrib.tpu.outfeed_dequeue_tuple(
                dtypes=[tf.int64, tf.float32],
                shapes=[(), ()],
                device_ordinal=i
            )
        outfeed_ops.append(outfeed_op)

    return infeed_ops, outfeed_ops

In [ ]:
def train_input_fn():
    # data input function runs on the CPU, not TPU

    # make some fake regression data
    x = np.random.rand(100, 5)
    w = np.random.rand(5)
    y = np.sum(x * w, axis=1)

    # TPUs currently do not support float64
    x_tensor = tf.constant(x, dtype=tf.float32)
    y_tensor = tf.constant(y, dtype=tf.float32)

    # create tf.data.Dataset
    dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))

    # TPUs need to know all dimensions including batch size
    batch_size = 16

    dataset = dataset.repeat().shuffle(32).batch(batch_size)#, drop_remainder=True)

    # TPUs need to know all dimensions when the graph is built
    # Datasets know the batch size only when the graph is run
    def set_shapes(features, labels):
        features_shape = features.get_shape().merge_with([batch_size, None])
        labels_shape = labels.get_shape().merge_with([batch_size])

        features.set_shape(features_shape)
        labels.set_shape(labels_shape)

        return features, labels

    dataset = dataset.map(set_shapes)
    dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)

    return dataset

In [ ]:
def main(args):
    # Unpack the tensor batch to be used to set up the infeed/outfeed queues.
    dataset = train_input_fn()
    iterator = dataset.make_one_shot_iterator()
    features, labels = iterator.get_next()

    infeed_ops, outfeed_ops = setup_feed(features, labels, num_shards=8)

    # Wrap the tpu computation function to be run in a loop.
    def computation_loop():
        return tf.contrib.tpu.repeat(args.max_steps, partial(tpu_computation_with_infeed, batch_size=16, num_shards=8))

    # Since we are using infeed/outfeed queues, tensors are not explicitly passed in or returned.
    tpu_computation_loop = tf.contrib.tpu.batch_parallel(computation_loop, num_shards=8)

    # utility ops
    tpu_init = tf.contrib.tpu.initialize_system()
    tpu_shutdown = tf.contrib.tpu.shutdown_system()
    variables_init = tf.global_variables_initializer()

    saver = tf.train.Saver()

    # get the TPU resource's grpc url
    # Note: when running on CMLE, args.tpu should be left as None
    tpu_grpc_url = TPUClusterResolver(tpu=args.tpu).get_master()
    sess = tf.Session(tpu_grpc_url)

    # Use separate threads to run infeed and outfeed.
    def _run_infeed():
        for i in range(args.max_steps):
            sess.run(infeed_ops)

            if i % args.save_checkpoints_steps == 0:
                print('infeed {}'.format(i))


    def _run_outfeed():
        for i in range(args.max_steps):
            outfeed_data = sess.run(outfeed_ops)

            if i % args.save_checkpoints_steps == 0:
                print('outfeed {}'.format(i))
                print('data returned from outfeed: {}'.format(outfeed_data))

                saver.save(sess, os.path.join(args.model_dir, 'model.ckpt'), global_step=i)


    infeed_thread = threading.Thread(target=_run_infeed)
    outfeed_thread = threading.Thread(target=_run_outfeed)

    sess.run(tpu_init)
    sess.run(variables_init)

    infeed_thread.start()
    outfeed_thread.start()

    sess.run(tpu_computation_loop)

    infeed_thread.join()
    outfeed_thread.join()

    sess.run(tpu_shutdown)

    saver.save(sess, os.path.join(args.model_dir, 'model.ckpt'), global_step=args.max_steps)

In [ ]:
parser = argparse.ArgumentParser()

parser.add_argument(
    '--model-dir',
    type=str,
    default='/tmp/tpu-template',
    help='Location to write checkpoints and summaries to.  Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
    '--max-steps',
    type=int,
    default=1000,
    help='The total number of steps to train the model.')
parser.add_argument(
    '--save-checkpoints-steps',
    type=int,
    default=100,
    help='The number of training steps before saving each checkpoint.')
parser.add_argument(
    '--tpu',
    default=None,
    help='The name or GRPC URL of the TPU node.  Leave it as `None` when training on CMLE.')

args, _ = parser.parse_known_args()

In [ ]:
# TODO(user): change this
args.model_dir = 'gs://your-gcs-bucket'

# Get hostname from environment using ipython magic.
# This returns a list.
hostname = !hostname

args.tpu = hostname[0]
args.use_tpu = True

In [ ]:
# Use gcloud command line tool to create a TPU in the same zone as the VM instance.
! gcloud compute tpus create `hostname` \
  --zone `gcloud compute instances list --filter="name=$(hostname)" --format 'csv[no-heading](zone)'`\
  --network default \
  --range 10.101.1.0 \
  --version 1.13

In [ ]:
main(args)

In [ ]:
# Use gcloud command line tool to delete the TPU.
! gcloud compute tpus delete `hostname` \
  --zone `gcloud compute instances list --filter="name=$(hostname)" --format 'csv[no-heading](zone)'`\
  --quiet