Interact Exercise 2

Imports


In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
import math

In [2]:
from IPython.html.widgets import interact, interactive, fixed
from IPython.display import display


:0: FutureWarning: IPython widgets are experimental and may change in the future.

Plotting with parameters

Write a plot_sin1(a, b) function that plots $sin(ax+b)$ over the interval $[0,4\pi]$.

  • Customize your visualization to make it effective and beautiful.
  • Customize the box, grid, spines and ticks to match the requirements of this data.
  • Use enough points along the x-axis to get a smooth plot.
  • For the x-axis tick locations use integer multiples of $\pi$.
  • For the x-axis tick labels use multiples of pi using LaTeX: $3\pi$.

In [13]:
def plot_sine1(a,b):
    f = plt.figure()
    ax = plt.subplot(111)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    plt.xticks([math.pi, 2*math.pi, 3*math.pi, 4*math.pi], [r'$\pi$',r'$2\pi$',r'$3\pi$',r'$4\pi$'])
    plt.xlabel("x")
    plt.ylabel("Sin(%.1fx+%.1f)"%(a,b))
    plt.plot(np.linspace(0, 4*math.pi, 1000), np.sin(a*np.linspace(0, 4*math.pi, 1000)+b))

In [14]:
plot_sine1(5, 3.4)


Then use interact to create a user interface for exploring your function:

  • a should be a floating point slider over the interval $[0.0,5.0]$ with steps of $0.1$.
  • b should be a floating point slider over the interval $[-5.0,5.0]$ with steps of $0.1$.

In [15]:
interact(plot_sine1, a=(0.0,5.0,.1), b=(-5.0,5.0,.1))



In [40]:
assert True # leave this for grading the plot_sine1 exercise

In matplotlib, the line style and color can be set with a third argument to plot. Examples of this argument:

  • dashed red: r--
  • blue circles: bo
  • dotted black: k.

Write a plot_sine2(a, b, style) function that has a third style argument that allows you to set the line style of the plot. The style should default to a blue line.


In [16]:
def plot_sine2(a,b,style='b-'):
    f = plt.figure()
    ax = plt.subplot(111)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    plt.xticks([math.pi, 2*math.pi, 3*math.pi, 4*math.pi], [r'$\pi$',r'$2\pi$',r'$3\pi$',r'$4\pi$'])
    plt.xlabel("x")
    plt.ylabel("Sin(%.1fx+%.1f)"%(a,b))
    plt.plot(np.linspace(0, 4*math.pi, 1000), np.sin(a*np.linspace(0, 4*math.pi, 1000)+b), style)

In [17]:
plot_sine2(4.0, -1.0, 'r--')


Use interact to create a UI for plot_sine2.

  • Use a slider for a and b as above.
  • Use a drop down menu for selecting the line style between a dotted blue line line, black circles and red triangles.

In [19]:
interact(plot_sine2, a=(0.0,5.0,.1), b=(-5.0,5.0,.1), style={'Dotted Blue Line':'b--', 'Black Circles':'ko', 'Red Triangles':'r^'})



In [20]:
assert True # leave this for grading the plot_sine2 exercise

In [ ]: