ApJdataFrames Chabrier2000

Title: Deuterium Burning in Substellar Objects
Authors: CBAH

Data is from this paper:
http://adsabs.harvard.edu/abs/2000ApJ...542L.119C


In [1]:
%pylab inline

import seaborn as sns
sns.set_context("notebook", font_scale=1.5)

import warnings
warnings.filterwarnings("ignore")


Populating the interactive namespace from numpy and matplotlib

In [2]:
import pandas as pd

In [3]:
from astropy.io import ascii

Table 1 - Characteristic of the Models [sic]


In [4]:
names = ["mass","t_Myr","Teff","log_L","log_g", "MB","MV","MR","MI","MJ","MH","MK"]
tbl1 = pd.read_csv("http://iopscience.iop.org/1538-4357/542/2/L119/fulltext/005577.tb1.txt",
                   skiprows=0, sep='\t', names=names, usecols=["mass","t_Myr","Teff","log_L"])
tbl1.mass.ffill(inplace=True)
tbl1["D_abundance"] = np.NaN
tbl1["D_abundance"][0::2]=2.0e-5
tbl1["D_abundance"][1::2]=1.0e-5
tbl1


Out[4]:
mass t_Myr Teff log_L D_abundance
0 0.015 18.42 2177 -3.17 0.00002
1 0.015 50.58 1834 -3.65 0.00001
2 0.020 7.59 2497 -2.67 0.00002
3 0.020 17.02 2415 -2.88 0.00001
4 0.030 2.92 2703 -2.21 0.00002
5 0.030 7.28 2682 -2.36 0.00001
6 0.040 2.02 2794 -1.93 0.00002
7 0.040 4.99 2784 -2.08 0.00001
8 0.050 1.55 2844 -1.74 0.00002
9 0.050 3.93 2846 -1.87 0.00001
10 0.060 1.31 2887 -1.58 0.00002
11 0.060 3.27 2887 -1.72 0.00001
12 0.070 1.13 2920 -1.45 0.00002
13 0.070 2.82 2925 -1.58 0.00001
14 0.072 1.07 2926 -1.43 0.00002
15 0.072 2.74 2932 -1.56 0.00001
16 0.075 1.03 2932 -1.39 0.00002
17 0.075 2.64 2942 -1.52 0.00001

Save data table locally.

! mkdir ../data/Chabrier2000

In [5]:
tbl1.to_csv("../data/Chabrier2000/tbl1.csv", sep='\t', index=False)

Script finished.