ApJdataFrames Muzic2012

Title: Substellar Objects in Nearby Young Clusters (SONYC). V. New Brown Dwarfs in ρ Ophiuchi
Authors: Muzic et al.

Data is from this paper:
http://iopscience.iop.org/0004-637X/744/2/134/


In [1]:
%pylab inline

import seaborn as sns
sns.set_context("notebook", font_scale=1.5)

#import warnings
#warnings.filterwarnings("ignore")


Populating the interactive namespace from numpy and matplotlib

In [2]:
import pandas as pd

Table 1 - Parameters of ρ Oph M-type Objects Observed with FMOS/Subaru and SINFONI/VLT


In [3]:
addr = "http://iopscience.iop.org/0004-637X/744/2/134/suppdata/apj408590t1_ascii.txt"
names = ["ID","RA", "DEC", "ins", "A_V_phot","A_V","T_eff","SpT","Ref","Name"]
tbl1 = pd.read_csv(addr, sep='\t', skiprows=10, skipfooter=8, index_col=False,
                   engine='python', na_values=r" ... ", names = names)
tbl1.T_eff = tbl1.T_eff.str.replace(">or=", '')
tbl1


Out[3]:
ID RA DEC ins A_V_phot A_V T_eff SpT Ref Name
0 1 16 26 03.28 -24 30 25.8 F 8.4 10 2650 NaN NaN SONYC-RhoOph-7
1 2 16 27 05.93 -24 18 40.2 F 7.8 8 2700 NaN NaN SONYC-RhoOph-6
2 3 16 27 38.63 -24 38 39.2 F 6.6 8 2750 M8.5, M7, M6 1 2 3 GY310
3 4 16 26 22.27 -24 24 07.1 F 9.7 8 2750 M6.5, M8.5 1 3 GY11
4 4 16 26 22.27 -24 24 07.1 S 9.7 12 2800 M6.5, M8.5 1 3 GY11
5 5 16 26 18.82 -24 26 10.5 F 9.4 10 2850 M7.5, M5.5, M7 1 2 3 CRBR 14; ISO-Oph-23
6 6 16 26 18.98 -24 24 14.3 F 17.6 16 2850 M5 1 2 CRBR 15
7 7 16 26 22.96 -24 28 46.1 F 13.2 14 2900 NaN NaN SONYC-RhoOph-5
8 8 16 26 51.28 -24 32 42.0 F 2.3 2 2900 M8, M8.5 5 4 GY141
9 9 16 26 53.35 -24 40 02.3 F 12.4 13 3000 NaN NaN SONYC-RhoOph-3
10 10 16 26 22.19 -24 23 52.4 F 13.8 14 3100 M8.5, M6.5 1 2 GY10
11 11 16 26 27.81 -24 26 41.8 F 6.4 6 3200 M5, M6 6 1 GY37
12 11 16 26 27.81 -24 26 41.8 S 6.4 6 3100 M5, M6 6 1 GY37
13 12 16 26 18.14 -24 30 33.0 F 14.7 13 3200 NaN NaN SONYC-RhoOph-4
14 13 16 27 46.29 -24 31 41.2 F 8.3 9 3200 M6 3 GY350
15 14 16 27 40.84 -24 29 00.7 S 3.1 3 2550 M8.25 7 CFHTWIR-Oph96
16 15 16 26 18.58 -24 29 51.4 S 15.0 18 2600 NaN NaN SONYC-RhoOph-8, CFHTWIR-Oph16
17 16 16 27 26.58 -24 25 54.4 S 0.9 2 2650 M8 6 GY264
18 17 16 27 26.22 -24 19 23.0 S 13.6 15 2800 NaN NaN SONYC-RhoOph-10; CFHTWIR-Oph78
19 18 16 26 37.81 -24 39 03.2 S 6.2 6 3100 NaN NaN SONYC-RhoOph-9; CFHTWIR-Oph31
20 19 16 27 06.60 -24 41 48.8 S 3.7 6 3150 M5.5, M6 6 3 GY204
21 20 16 26 23.81 -24 18 29.0 S 8.2 10 3200 M6.7, M7 5 8 CRBR 31

Table 2. Spectral Types Calculated from the SINFONI Spectra


In [4]:
addr = "http://iopscience.iop.org/0004-637X/744/2/134/suppdata/apj408590t2_ascii.txt"
names = ["ID","SpT_HPI", "SpT_Q", "SpT_H_2O"]
tbl2 = pd.read_csv(addr, sep='\t', skiprows=8, skipfooter=5, index_col=False,
                   engine='python', na_values=r" ... ", names = names)
tbl2


Out[4]:
ID SpT_HPI SpT_Q SpT_H_2O
0 1 M9.7 NaN M9.6
1 2 M8.6 NaN M6.9
2 3 M8.3 NaN M6.6
3 4 M8.5, M8.0 M6.1 M6.6, M7.8
4 5 M8.5 NaN M8.0
5 6 M8.0 NaN M5.7
6 7 M7.4 NaN M5.7
7 8 M8.0 NaN M6.3
8 9 M7.5 NaN M5.1
9 10 M7.4 NaN M5.5
10 11 <or=M7, M7.1 M5.8 <or=M5, M5.8
11 12 M7.0 NaN M5.0
12 13 M7.1 NaN <or=M5
13 14 M9.3 M7.1 NaN
14 15 M9.1 M8.7 M8.0
15 16 M8.6 M8.0 M8.0
16 17 M7.8 M6.2 M8.4
17 18 M7.0 M6.8 M5.4
18 19 M7.1 M5.9 M6.4
19 20 M7.0 M6.6 M5.7
20 21 <or=M7 NaN <or=M5

Need to parse these strings if I'm going to use this data.

Save data.


In [5]:
!mkdir ../data/Muzic2012


mkdir: ../data/Muzic2012: File exists

In [6]:
tbl1.to_csv("../data/Muzic2012/tbl1.csv", sep='\t', index=False)

Script finished.