Import the relevant libraries:
In [2]:
import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn
Define the RNN model:
In [3]:
class SeriesPredictor:
def __init__(self, input_dim, seq_size, hidden_dim=10):
# Hyperparameters
self.input_dim = input_dim
self.seq_size = seq_size
self.hidden_dim = hidden_dim
# Weight variables and input placeholders
self.W_out = tf.Variable(tf.random_normal([hidden_dim, 1]), name='W_out')
self.b_out = tf.Variable(tf.random_normal([1]), name='b_out')
self.x = tf.placeholder(tf.float32, [None, seq_size, input_dim])
self.y = tf.placeholder(tf.float32, [None, seq_size])
# Cost optimizer
self.cost = tf.reduce_mean(tf.square(self.model() - self.y))
self.train_op = tf.train.AdamOptimizer().minimize(self.cost)
# Auxiliary ops
self.saver = tf.train.Saver()
def model(self):
"""
:param x: inputs of size [T, batch_size, input_size]
:param W: matrix of fully-connected output layer weights
:param b: vector of fully-connected output layer biases
"""
cell = rnn.BasicLSTMCell(self.hidden_dim, reuse=tf.get_variable_scope().reuse)
outputs, states = tf.nn.dynamic_rnn(cell, self.x, dtype=tf.float32)
num_examples = tf.shape(self.x)[0]
W_repeated = tf.tile(tf.expand_dims(self.W_out, 0), [num_examples, 1, 1])
out = tf.matmul(outputs, W_repeated) + self.b_out
out = tf.squeeze(out)
return out
def train(self, train_x, train_y):
with tf.Session() as sess:
tf.get_variable_scope().reuse_variables()
sess.run(tf.global_variables_initializer())
for i in range(1000):
_, mse = sess.run([self.train_op, self.cost], feed_dict={self.x: train_x, self.y: train_y})
if i % 100 == 0:
print(i, mse)
save_path = self.saver.save(sess, 'model.ckpt')
print('Model saved to {}'.format(save_path))
def test(self, test_x):
with tf.Session() as sess:
tf.get_variable_scope().reuse_variables()
self.saver.restore(sess, './model.ckpt')
output = sess.run(self.model(), feed_dict={self.x: test_x})
return output
Now, we'll train a series predictor. Let's say we have a sequence of numbers [a, b, c, d]
that we want to transform into [a, a+b, b+c, c+d]
. We'll give the RNN a couple examples in the training data. Let's see how well it learns this intended transformation:
In [4]:
if __name__ == '__main__':
predictor = SeriesPredictor(input_dim=1, seq_size=4, hidden_dim=10)
train_x = [[[1], [2], [5], [6]],
[[5], [7], [7], [8]],
[[3], [4], [5], [7]]]
train_y = [[1, 3, 7, 11],
[5, 12, 14, 15],
[3, 7, 9, 12]]
predictor.train(train_x, train_y)
test_x = [[[1], [2], [3], [4]], # 1, 3, 5, 7
[[4], [5], [6], [7]]] # 4, 9, 11, 13
actual_y = [[[1], [3], [5], [7]],
[[4], [9], [11], [13]]]
pred_y = predictor.test(test_x)
print("\nLets run some tests!\n")
for i, x in enumerate(test_x):
print("When the input is {}".format(x))
print("The ground truth output should be {}".format(actual_y[i]))
print("And the model thinks it is {}\n".format(pred_y[i]))
In [ ]: