Import the usual libraries:
In [1]:
%matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
Generated some initial 2D data:
In [2]:
learning_rate = 0.01
training_epochs = 1000
num_labels = 3
batch_size = 100
x1_label0 = np.random.normal(1, 1, (100, 1))
x2_label0 = np.random.normal(1, 1, (100, 1))
x1_label1 = np.random.normal(5, 1, (100, 1))
x2_label1 = np.random.normal(4, 1, (100, 1))
x1_label2 = np.random.normal(8, 1, (100, 1))
x2_label2 = np.random.normal(0, 1, (100, 1))
plt.scatter(x1_label0, x2_label0, c='r', marker='o', s=60)
plt.scatter(x1_label1, x2_label1, c='g', marker='x', s=60)
plt.scatter(x1_label2, x2_label2, c='b', marker='_', s=60)
plt.show()
Define the labels and shuffle the data:
In [3]:
xs_label0 = np.hstack((x1_label0, x2_label0))
xs_label1 = np.hstack((x1_label1, x2_label1))
xs_label2 = np.hstack((x1_label2, x2_label2))
xs = np.vstack((xs_label0, xs_label1, xs_label2))
labels = np.matrix([[1., 0., 0.]] * len(x1_label0) + [[0., 1., 0.]] * len(x1_label1) + [[0., 0., 1.]] * len(x1_label2))
arr = np.arange(xs.shape[0])
np.random.shuffle(arr)
xs = xs[arr, :]
labels = labels[arr, :]
We'll get back to this later, but the following are test inputs that we'll use to evaluate the model:
In [4]:
test_x1_label0 = np.random.normal(1, 1, (10, 1))
test_x2_label0 = np.random.normal(1, 1, (10, 1))
test_x1_label1 = np.random.normal(5, 1, (10, 1))
test_x2_label1 = np.random.normal(4, 1, (10, 1))
test_x1_label2 = np.random.normal(8, 1, (10, 1))
test_x2_label2 = np.random.normal(0, 1, (10, 1))
test_xs_label0 = np.hstack((test_x1_label0, test_x2_label0))
test_xs_label1 = np.hstack((test_x1_label1, test_x2_label1))
test_xs_label2 = np.hstack((test_x1_label2, test_x2_label2))
test_xs = np.vstack((test_xs_label0, test_xs_label1, test_xs_label2))
test_labels = np.matrix([[1., 0., 0.]] * 10 + [[0., 1., 0.]] * 10 + [[0., 0., 1.]] * 10)
Again, define the placeholders, variables, model, and cost function:
In [5]:
train_size, num_features = xs.shape
X = tf.placeholder("float", shape=[None, num_features])
Y = tf.placeholder("float", shape=[None, num_labels])
W = tf.Variable(tf.zeros([num_features, num_labels]))
b = tf.Variable(tf.zeros([num_labels]))
y_model = tf.nn.softmax(tf.matmul(X, W) + b)
cost = -tf.reduce_sum(Y * tf.log(y_model))
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
Train the softmax classification model:
In [6]:
with tf.Session() as sess:
tf.global_variables_initializer().run()
for step in range(training_epochs * train_size // batch_size):
offset = (step * batch_size) % train_size
batch_xs = xs[offset:(offset + batch_size), :]
batch_labels = labels[offset:(offset + batch_size)]
err, _ = sess.run([cost, train_op], feed_dict={X: batch_xs, Y: batch_labels})
if step % 100 == 0:
print (step, err)
W_val = sess.run(W)
print('w', W_val)
b_val = sess.run(b)
print('b', b_val)
print("accuracy", accuracy.eval(feed_dict={X: test_xs, Y: test_labels}))