In [54]:
    
import tensorflow as tf
import numpy as np
    
In [39]:
    
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
print(node1, node2, sep="\n")
    
    
In [40]:
    
sess = tf.Session()
print(sess.run([node1, node2]))
    
    
In [41]:
    
node3 = tf.add(node1, node2) # Seems like you can also write node1 + node2 instead
print("node3: ", node3)
print("sess.run(node3): ",sess.run(node3))
    
    
In [42]:
    
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b  # + provides a shortcut for tf.add(a, b)
print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))
    
    
In [43]:
    
add_and_triple = adder_node * 3.
print(sess.run(add_and_triple, {a: 3, b:4.5}))
    
    
In [44]:
    
W = tf.Variable([.3], dtype=tf.float32) # Variables need type and initial value
b = tf.Variable([-.3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W * x + b
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(linear_model, {x:[1,2,3,4]}))
    
    
In [45]:
    
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
    
    
In [46]:
    
fixW = tf.assign(W, [-1.]) # Assign W and b manually its perfect values
fixb = tf.assign(b, [1.])
sess.run([fixW, fixb])
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
    
    
In [48]:
    
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
sess.run(init) # reset values to incorrect defaults.
for i in range(1000):
    sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]})
print(sess.run([W, b]))
    
    
In [53]:
    
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:[1,2,3,4], y:[0,-1,-2,-3]})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))
    
    
In [55]:
    
# Declare list of features. We only have one real-valued feature. There are many
# other types of columns that are more complicated and useful.
features = [tf.contrib.layers.real_valued_column("x", dimension=1)]
# An estimator is the front end to invoke training (fitting) and evaluation
# (inference). There are many predefined types like linear regression,
# logistic regression, linear classification, logistic classification, and
# many neural network classifiers and regressors. The following code
# provides an estimator that does linear regression.
estimator = tf.contrib.learn.LinearRegressor(feature_columns=features)
# TensorFlow provides many helper methods to read and set up data sets.
# Here we use two data sets: one for training and one for evaluation
# We have to tell the function how many batches
# of data (num_epochs) we want and how big each batch should be.
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.contrib.learn.io.numpy_input_fn({"x":x_train}, y_train,
                                              batch_size=4,
                                              num_epochs=1000)
eval_input_fn = tf.contrib.learn.io.numpy_input_fn(
    {"x":x_eval}, y_eval, batch_size=4, num_epochs=1000)
# We can invoke 1000 training steps by invoking the  method and passing the
# training data set.
estimator.fit(input_fn=input_fn, steps=1000)
# Here we evaluate how well our model did.
train_loss = estimator.evaluate(input_fn=input_fn)
eval_loss = estimator.evaluate(input_fn=eval_input_fn)
print("train loss: %r"% train_loss)
print("eval loss: %r"% eval_loss)
    
    
In [75]:
    
# Declare list of features, we only have one real-valued feature
def model(features, labels, mode):
    # Build a linear model and predict values
    W = tf.get_variable("W", [1], dtype=tf.float64)
    b = tf.get_variable("b", [1], dtype=tf.float64)
    y = W*features['x'] + b
    # Loss sub-graph
    loss = tf.reduce_sum(tf.square(y - labels))
    # Training sub-graph
    global_step = tf.train.get_global_step()
    optimizer = tf.train.GradientDescentOptimizer(0.01)
    train = tf.group(optimizer.minimize(loss),
                     tf.assign_add(global_step, 1))
    # ModelFnOps connects subgraphs we built to the
    # appropriate functionality.
    return tf.contrib.learn.ModelFnOps(
        mode=mode, predictions=y,
        loss=loss,
        train_op=train)
estimator = tf.contrib.learn.Estimator(model_fn=model)
# define our data sets
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x_train}, y_train, 4, num_epochs=1000)
# train
estimator.fit(input_fn=input_fn, steps=1000)
# Here we evaluate how well our model did. 
train_loss = estimator.evaluate(input_fn=input_fn)
eval_loss = estimator.evaluate(input_fn=eval_input_fn)
print("train loss: %r"% train_loss)
print("eval loss: %r"% eval_loss)
    
    
In [74]:
    
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
In [86]:
    
# Instead you could have used an interactive session here but these are boring.
sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
    
In [87]:
    
y = tf.matmul(x,W) + b
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
for _ in range(1000):
    batch = mnist.train.next_batch(100)
    sess.run(train_step, {x: batch[0], y_: batch[1]})
    
In [91]:
    
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(accuracy, {x: mnist.test.images, y_: mnist.test.labels})
    
    Out[91]:
In [92]:
    
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
    
In [93]:
    
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                          strides=[1, 2, 2, 1], padding='SAME')
    
In [95]:
    
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    
In [96]:
    
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
In [100]:
    
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(2000):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy = sess.run(accuracy, {x: batch[0], y_: batch[1], keep_prob: 1.0})
            print('step %d, training accuracy %g' % (i, train_accuracy))
        sess.run(train_step, {x: batch[0], y_: batch[1], keep_prob: 0.5})
    print('test accuracy %g' % sess.run(accuracy, {x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))