In [1]:
    
# If you want the figures to appear in the notebook, 
# and you want to interact with them, use
# %matplotlib notebook
# If you want the figures to appear in the notebook, 
# and you don't want to interact with them, use
# %matplotlib inline
# If you want the figures to appear in separate windows, use
# %matplotlib qt5
# tempo switch from one to another, you have to select Kernel->Restart
%matplotlib inline
from modsim import *
    
In [2]:
    
kg = UNITS.kilogram
m = UNITS.meter
s = UNITS.second
N = UNITS.newton
    
In [371]:
    
condition = Condition(mass = 0.03 * kg,
                      fraction = 1 / 3,
                      k = 9810.0 * N / m,
                      duration = 0.3 * s,
                      L = 0.05 * m,
                      d = 0.005 * m,
                      v1 = 0 * m / s,
                      v2 = 0 * m / s,
                      g = 9.8 * m / s**2)
    
In [384]:
    
condition = Condition(mass = 0.03,
                      fraction = 1 / 3,
                      k = 9810.0,
                      duration = 0.3,
                      L = 0.05,
                      d = 0.005,
                      v1 = 0,
                      v2 = 0,
                      g = 9.8)
    
In [398]:
    
def make_system(condition):
    """Make a system object.
    
    condition: Condition with 
    
    returns: System with init
    """
    unpack(condition)
    
    x1 = L - d    # upper mass
    x2 = 0        # lower mass  
    
    init = State(x1=x1, x2=x2, v1=v1, v2=v2)
    
    m1, m2 = fraction*mass, (1-fraction)*mass
    ts = linspace(0, duration, 1001)
    
    return System(init=init, m1=m1, m2=m2, k=k, L=L, ts=ts)
    
Testing make_system
In [399]:
    
system = make_system(condition)
system
    
    Out[399]:
In [400]:
    
system.init
    
    Out[400]:
In [401]:
    
def slope_func(state, t, system):
    """Computes the derivatives of the state variables.
    
    state: State object with theta, y, r
    t: time
    system: System object with r, k
    
    returns: sequence of derivatives
    """
    x1, x2, v1, v2 = state
    unpack(system)
    
    dx = x1 - x2
    f_spring = k * (L - dx)
    
    a1 = f_spring/m1 - g
    a2 = -f_spring/m2 - g
    
    if t < 0.003 and a2 < 0:
        a2 = 0
    
    return v1, v2, a1, a2
    
Testing slope_func
In [402]:
    
slope_func(system.init, 0, system)
    
    Out[402]:
Now we can run the simulation.
In [403]:
    
run_odeint(system, slope_func)
    
In [404]:
    
system.results.tail()
    
    Out[404]:
In [405]:
    
plot(system.results.x1)
    
    
In [406]:
    
plot(system.results.x2)
    
    
In [407]:
    
plot(system.results.x1 - system.results.x2)
    
    
In [14]:
    
plot(ys, color='green', label='y')
decorate(xlabel='Time (s)',
         ylabel='Length (m)')
    
Plotting r
In [15]:
    
plot(rs, color='red', label='r')
decorate(xlabel='Time (s)',
         ylabel='Radius (mm)')
    
We can also see the relationship between y and r, which I derive analytically in the book.
In [16]:
    
plot(rs, ys, color='purple')
decorate(xlabel='Radius (mm)',
         ylabel='Length (m)',
         legend=False)
    
And here's the figure from the book.
In [17]:
    
subplot(3, 1, 1)
plot(thetas, label='theta')
decorate(ylabel='Angle (rad)')
subplot(3, 1, 2)
plot(ys, color='green', label='y')
decorate(ylabel='Length (m)')
subplot(3, 1, 3)
plot(rs, color='red', label='r')
decorate(xlabel='Time(s)',
         ylabel='Radius (mm)')
savefig('chap11-fig01.pdf')
    
We can use interpolation to find the time when y is 47 meters.
In [18]:
    
T = interp_inverse(ys, kind='cubic')
t_end = T(47)
t_end
    
At that point r is 55 mm, which is Rmax, as expected.
In [19]:
    
R = interpolate(rs, kind='cubic')
R(t_end)
    
The total amount of rotation is 1253 rad.
In [20]:
    
THETA = interpolate(thetas, kind='cubic')
THETA(t_end)
    
For unrolling the paper, we need more units:
In [21]:
    
kg = UNITS.kilogram
N = UNITS.newton
    
And a few more parameters in the Condition object.
In [22]:
    
condition = Condition(Rmin = 0.02 * m,
                      Rmax = 0.055 * m,
                      Mcore = 15e-3 * kg,
                      Mroll = 215e-3 * kg,
                      L = 47 * m,
                      tension = 2e-4 * N,
                      duration = 180 * s)
    
make_system computes rho_h, which we'll need to compute moment of inertia, and k, which we'll use to compute r.
In [23]:
    
def make_system(condition):
    """Make a system object.
    
    condition: Condition with Rmin, Rmax, Mcore, Mroll,
                              L, tension, and duration
    
    returns: System with init, k, rho_h, Rmin, Rmax,
                         Mcore, Mroll, ts
    """
    unpack(condition)
    
    init = State(theta = 0 * radian,
                 omega = 0 * radian/s,
                 y = L)
    
    area = pi * (Rmax**2 - Rmin**2)
    rho_h = Mroll / area
    k = (Rmax**2 - Rmin**2) / 2 / L / radian    
    ts = linspace(0, duration, 101)
    
    return System(init=init, k=k, rho_h=rho_h,
                  Rmin=Rmin, Rmax=Rmax,
                  Mcore=Mcore, Mroll=Mroll, 
                  ts=ts)
    
Testing make_system
In [24]:
    
system = make_system(condition)
system
    
In [25]:
    
system.init
    
Here's how we compute I as a function of r:
In [26]:
    
def moment_of_inertia(r, system):
    """Moment of inertia for a roll of toilet paper.
    
    r: current radius of roll in meters
    system: System object with Mcore, rho, Rmin, Rmax
    
    returns: moment of inertia in kg m**2
    """
    unpack(system)
    Icore = Mcore * Rmin**2   
    Iroll = pi * rho_h / 2 * (r**4 - Rmin**4)
    return Icore + Iroll
    
When r is Rmin, I is small.
In [27]:
    
moment_of_inertia(system.Rmin, system)
    
As r increases, so does I.
In [28]:
    
moment_of_inertia(system.Rmax, system)
    
Here's the slope function.
In [29]:
    
def slope_func(state, t, system):
    """Computes the derivatives of the state variables.
    
    state: State object with theta, omega, y
    t: time
    system: System object with Rmin, k, Mcore, rho_h, tension
    
    returns: sequence of derivatives
    """
    theta, omega, y = state
    unpack(system)
    
    r = sqrt(2*k*y + Rmin**2)
    I = moment_of_inertia(r, system)
    tau = r * tension
    alpha = tau / I
    dydt = -r * omega
    
    return omega, alpha, dydt
    
Testing slope_func
In [30]:
    
slope_func(system.init, 0*s, system)
    
Now we can run the simulation.
In [31]:
    
run_odeint(system, slope_func)
    
And look at the results.
In [32]:
    
system.results.tail()
    
Extrating the time series
In [33]:
    
thetas = system.results.theta
omegas = system.results.omega
ys = system.results.y
    
Plotting theta
In [34]:
    
plot(thetas, label='theta')
decorate(xlabel='Time (s)',
         ylabel='Angle (rad)')
    
Plotting omega
In [35]:
    
plot(omegas, color='orange', label='omega')
decorate(xlabel='Time (s)',
         ylabel='Angular velocity (rad/s)')
    
Plotting y
In [36]:
    
plot(ys, color='green', label='y')
decorate(xlabel='Time (s)',
         ylabel='Length (m)')
    
Here's the figure from the book.
In [37]:
    
subplot(3, 1, 1)
plot(thetas, label='theta')
decorate(ylabel='Angle (rad)')
subplot(3, 1, 2)
plot(omegas, color='orange', label='omega')
decorate(ylabel='Angular velocity (rad/s)')
subplot(3, 1, 3)
plot(ys, color='green', label='y')
decorate(xlabel='Time(s)',
         ylabel='Length (m)')
savefig('chap11-fig02.pdf')
    
Exercise: Simulate the descent of a yo-yo. How long does it take to reach the end of the string.
I provide a Condition object with the system parameters:
Rmin is the radius of the axle.  Rmax is the radius of the axle plus rolled string.
Rout is the radius of the yo-yo body.  mass is the total mass of the yo-yo, ignoring the string.
L is the length of the string.
g is the acceleration of gravity.
In [38]:
    
condition = Condition(Rmin = 8e-3 * m,
                      Rmax = 16e-3 * m,
                      Rout = 35e-3 * m,
                      mass = 50e-3 * kg,
                      L = 1 * m,
                      g = 9.8 * m / s**2,
                      duration = 1 * s)
    
Here's a make_system function that computes I and k based on the system parameters.
I estimated I by modeling the yo-yo as a solid cylinder with uniform density (see here).  In reality, the distribution of weight in a yo-yo is often designed to achieve desired effects.  But we'll keep it simple.
In [39]:
    
def make_system(condition):
    """Make a system object.
    
    condition: Condition with Rmin, Rmax, Rout, 
                              mass, L, g, duration
    
    returns: System with init, k, Rmin, Rmax, mass,
                         I, g, ts
    """
    unpack(condition)
    
    init = State(theta = 0 * radian,
                 omega = 0 * radian/s,
                 y = L,
                 v = 0 * m / s)
    
    I = mass * Rout**2 / 2
    k = (Rmax**2 - Rmin**2) / 2 / L / radian    
    ts = linspace(0, duration, 101)
    
    return System(init=init, k=k,
                  Rmin=Rmin, Rmax=Rmax,
                  mass=mass, I=I, g=g,
                  ts=ts)
    
Testing make_system
In [40]:
    
system = make_system(condition)
system
    
In [41]:
    
system.init
    
Write a slope function for this system, using these results from the book:
$ r = \sqrt{2 k y + R_{min}^2} $
$ T = m g I / I^* $
$ a = -m g r^2 / I^* $
$ \alpha = m g r / I^* $
where $I^*$ is the augmented moment of inertia, $I + m r^2$.
Hint: If y is less than 0, it means you have reached the end of the string, so the equation for r is no longer valid.  In this case, the simplest thing to do it return the sequence of derivatives 0, 0, 0, 0
In [42]:
    
# Solution goes here
    
Test your slope function with the initial conditions.
In [43]:
    
slope_func(system.init, 0*s, system)
    
Then run the simulation.
In [44]:
    
run_odeint(system, slope_func)
    
Check the final conditions.  If things have gone according to plan, the final value of y should be close to 0.
In [45]:
    
system.results.tail()
    
Plot the results.
In [46]:
    
thetas = system.results.theta
ys = system.results.y
    
theta should increase and accelerate.
In [47]:
    
plot(thetas, label='theta')
decorate(xlabel='Time (s)',
         ylabel='Angle (rad)')
    
y should decrease and accelerate down.
In [48]:
    
plot(ys, color='green', label='y')
decorate(xlabel='Time (s)',
         ylabel='Length (m)')
    
In [ ]: