In [ ]:
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'

In [ ]:
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
os.environ['TFVERSION'] = '1.13'

In [ ]:
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/babyweight/trained_model; then
  gsutil mb -l ${REGION} gs://${BUCKET}
  # copy canonical model if you didn't do previous notebook
  gsutil -m cp -R gs://cloud-training-demos/babyweight/trained_model gs://${BUCKET}/babyweight
fi

In [ ]:
%%bash
gsutil ls gs://${BUCKET}/babyweight/trained_model/export/exporter/

In [ ]:
%%bash
MODEL_NAME="babyweight"
MODEL_VERSION="ml_on_gcp"
MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/babyweight/trained_model/export/exporter/ | tail -1)
echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes"
#gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME}
#gcloud ai-platform models delete ${MODEL_NAME}
gcloud ai-platform models create ${MODEL_NAME} --regions $REGION
gcloud ai-platform versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version $TFVERSION

Online Prediction


In [ ]:
from oauth2client.client import GoogleCredentials
import requests
import json

MODEL_NAME = 'babyweight'
MODEL_VERSION = 'ml_on_gcp'

token = GoogleCredentials.get_application_default().get_access_token().access_token
api = 'https://ml.googleapis.com/v1/projects/{}/models/{}/versions/{}:predict' \
         .format(PROJECT, MODEL_NAME, MODEL_VERSION)
headers = {'Authorization': 'Bearer ' + token }
data = {
  'instances': [
    {
      'key': 'b1',
      'is_male': 'True',
      'mother_age': 26.0,
      'plurality': 'Single(1)',
      'gestation_weeks': 39
    },
    {
      'key': 'g1',
      'is_male': 'False',
      'mother_age': 29.0,
      'plurality': 'Single(1)',
      'gestation_weeks': 38
    },
    {
      'key': 'b2',
      'is_male': 'True',
      'mother_age': 26.0,
      'plurality': 'Triplets(3)',
      'gestation_weeks': 39
    },
    {
      'key': 'u1',
      'is_male': 'Unknown',
      'mother_age': 29.0,
      'plurality': 'Multiple(2+)',
      'gestation_weeks': 38
    },
  ]
}
response = requests.post(api, json=data, headers=headers)
print(response.content)

Batch prediction


In [ ]:
%%writefile inputs.json
{"key": "b1", "is_male": "True", "mother_age": 26.0, "plurality": "Single(1)", "gestation_weeks": 39}
{"key": "g1", "is_male": "False", "mother_age": 26.0, "plurality": "Single(1)", "gestation_weeks": 39}

In [ ]:
%%bash
INPUT=gs://${BUCKET}/babyweight/batchpred/inputs.json
OUTPUT=gs://${BUCKET}/babyweight/batchpred/outputs
gsutil cp inputs.json $INPUT
gsutil -m rm -rf $OUTPUT 
gcloud ai-platform jobs submit prediction babypred_$(date -u +%y%m%d_%H%M%S) \
  --data-format=TEXT --region ${REGION} \
  --input-paths=$INPUT \
  --output-path=$OUTPUT \
  --model=babyweight --version=ml_on_gcp

In [ ]: