"This notebook corresponds to version {{ version }} of the pipeline tool: https://github.com/NSLS-II/pipelines"
In [1]:
from databroker import DataBroker as db, get_images, get_table, get_events
from filestore.api import register_handler, deregister_handler
from filestore.retrieve import _h_registry, _HANDLER_CACHE
In [2]:
hdr = db[{{ uid }}]
In [2]:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import time
from ipywidgets import interact
In [3]:
cd /home/yuzhang/chx-pipelines/Develops/
In [5]:
cd /XF11ID/analysis/Analysis_Pipelines/Develop/
In [5]:
%run develop.py
%run two_time.py
In [6]:
%matplotlib notebook
#%matplotlib inline
In [7]:
BlueScan = True
DirectAcq = False
detector = 'eiger_4M_cam_img_image_lightfield' #for 4M
In [10]:
if BlueScan:
uid = '54614d43'
#uid = '95782687'
uid = '95782687'
uid= 'ff9f20c0'
uid='71720966'
uid='1663d34a'
uid = 'f505e052-3baa-47d4-bdc4-61c2eb1bcc7a' #sid= 551, 1%PEG,
uid='ee6975a1-9161' #1% wt PEG
uid = 'ffe9d518' # 10 mTorr 1sec/frame
else:
uid = '/XF11ID/data/2015/11/23/d01ab510-3cf3-4719-bee3_795_master.h5'
In [13]:
if BlueScan:
hdr = db[uid]
ev, = get_events( hdr, [detector] )
imgs = ev['data'][detector]
else:
imgs = Images(uid)
print (imgs)
Nimg=len(imgs)
In [14]:
if BlueScan:
from datetime import datetime
dt = datetime.fromtimestamp(hdr['start'].time)
path ='/XF11ID/analysis' + '/%s/%s/%s/' % (dt.year, dt.month, dt.day)
else:
path ='/XF11ID/analysis/2015/11/23/'
path
Out[14]:
In [15]:
imgs.md
Out[15]:
In [16]:
# The physical size of the pixels
dpix = imgs.md['x_pixel_size'] * 1000.
lambda_ = imgs.md['incident_wavelength'] # wavelegth of the X-rays in Angstroms
Ldet = 4812. # detector to sample distance (mm)
exposuretime= imgs.md['count_time']
acquisition_period = imgs.md['frame_time']
# deadtime= 0 # 60e-6
# timeperframe = exposuretime + deadtime
timeperframe = acquisition_period
timeperframe, exposuretime
Out[16]:
In [17]:
mask = np.load( path + str(uid)+ "_mask.npy")
In [18]:
maskr = mask[::-1,:]
In [19]:
fig, ax = plt.subplots()
im=ax.imshow(maskr, origin='lower' ,vmin=0,vmax=1,cmap='viridis')
fig.colorbar(im)
plt.show()
In [20]:
def view_image(i):
fig, ax = plt.subplots()
ax.imshow(imgs[i]*mask, interpolation='nearest', cmap='viridis',
origin='lower', norm= LogNorm(vmin=0.001, vmax=1e1) )
ax.set_title("Browse the Image Stack")
plt.show()
In [21]:
#interact(view_image, i=(0, Nimg-1))
In [22]:
def view_image(sleeps=1, ims=0, ime = 1):
fig, ax = plt.subplots()
for i in range( ims, ime ):
im=ax.imshow(imgs[i]*mask, interpolation='nearest', cmap='viridis',
origin='lower', norm= LogNorm( vmin=0.01, vmax=10 ) )
ax.set_title("images_%s"%i)
time.sleep( sleeps )
plt.draw()
#fig.colorbar(im)
#view_image(.2, 0, 2)
In [23]:
kymo_sum = np.load( path + str(uid)+"_kymo_sum.npy" )
In [24]:
bad_frames = np.where( kymo_sum > 1e5)[0]
bad_frames
Out[24]:
In [25]:
fig, axes = plt.subplots( )
axes.plot( kymo_sum, '-go' )
ax.set_ylabel('Intensity')
ax.set_xlabel('Frame')
ax.set_title('Kymograph_sum')
plt.show()
In [26]:
avg_img = np.load( path + str(uid)+"_avg_img.npy" )
avg_imgm = avg_img * mask
In [27]:
avg_imgr = avg_img[::-1,:]
avg_imgmr = avg_imgm[::-1,:]
In [28]:
fig, ax = plt.subplots()
im = ax.imshow(avg_imgmr, cmap='viridis',origin='lower',
norm= LogNorm(vmin=0.001, vmax=1e1))
ax.set_title("Masked Averaged Image_Reversed")
fig.colorbar(im)
plt.show()
In [31]:
# The physical size of the pixels
dpix = imgs.md['x_pixel_size'] * 1000.
lambda_ = imgs.md['incident_wavelength'] # wavelegth of the X-rays in Angstroms
Ldet = 4810 # detector to sample distance (mm)
exposuretime= imgs.md['count_time']
acquisition_period = imgs.md['frame_time']
# deadtime= 0 # 60e-6
# timeperframe = exposuretime + deadtime
timeperframe = acquisition_period
timeperframe, exposuretime
Out[31]:
In [32]:
inc_x0 = 1871
inc_y0 = 339
refl_x0 = 1871
refl_y0 = 811 #1670
Lsd= 4.81
lamda= lambda_ #12.4/9
In [33]:
lamda
Out[33]:
In [34]:
alphaf,thetaf, alphai, phi = get_reflected_angles( inc_x0, inc_y0,refl_x0 , refl_y0, Lsd=Lsd )
In [35]:
qx, qy, qr, qz = convert_gisaxs_pixel_to_q( inc_x0, inc_y0,refl_x0,refl_y0, lamda=lamda, Lsd=Lsd )
In [36]:
fig, ax = plt.subplots()
#im=ax.imshow(alphaf, origin='lower' ,cmap='viridis',norm= LogNorm(vmin=0.0001,vmax=2.00))
im=ax.imshow(alphaf*180/np.pi, origin='lower' ,cmap='viridis',vmin=-1,vmax= 1.5 )
fig.colorbar(im)
ax.set_title( 'alphaf')
plt.show()
In [37]:
fig, ax = plt.subplots()
#im=ax.imshow(alphaf, origin='lower' ,cmap='viridis',norm= LogNorm(vmin=0.0001,vmax=2.00))
im=ax.imshow(qr, origin='lower' ,cmap='viridis',vmin=qr.min(),vmax= qr.max(),)
#extent= [ qr.min(),qr.max(),qr.min(),qr.max()] )
fig.colorbar(im)
ax.set_title( 'Q-Parallel')
#ax.grid(True, which='both', color='r', linestyle='--')
ax.grid(True, color='r', linestyle='--')
#ax.grid(True,color='white')
plt.show()
In [38]:
fig, ax = plt.subplots()
#im=ax.imshow(alphaf, origin='lower' ,cmap='viridis',norm= LogNorm(vmin=0.0001,vmax=2.00))
im=ax.imshow(qz, origin='lower' ,cmap='viridis',vmin=qz.min(),vmax= qz.max() )
fig.colorbar(im)
ax.set_title( 'Q-z')
plt.show()
In [41]:
fig, ax = plt.subplots()
im = ax.imshow(avg_imgr, cmap='viridis', origin = 'lower', norm= LogNorm( vmin=0.00001, vmax=.5e2 ) )
ax.set_title("Masked Averaged Image")
fig.colorbar(im)
plt.show()
In [42]:
vert_rect = ( ( 850, 0, 980- 850, 1600-0) , ( 570, 0, 700- 570, 1600-0) ) #(y,x, hight, wdith)
In [43]:
new_mask = np.ones_like( avg_imgr)
new_mask[ :, 1020:1045] =0
In [44]:
get_qr_intensity( qr, avg_imgr, vert_rect, mask=new_mask, show_roi=True)
In [45]:
qz_start = qz[670,0]
qz_end = qz[950,0]
qz_num= 2
qr_start = qr[600,1700]
qr_end = qr[600,0]
qr_num = 15
In [46]:
qr_edge, qr_center = get_qedge(qr_start , qr_end, ( qr_end- qr_start)/qr_num, qr_num )
qz_edge, qz_center = get_qedge( qz_start, qz_end, (qz_end - qz_start)/(qz_num -0) , qz_num )
label_array_qz = get_qmap_label( qz, qz_edge)
label_array_qr = get_qmap_label( qr, qr_edge)
label_array_qzr,qzc,qrc = get_qzrmap(label_array_qz, label_array_qr,qz_center, qr_center )
labels_qzr, indices_qzr = roi.extract_label_indices( label_array_qzr )
labels_qz, indices_qz = roi.extract_label_indices( label_array_qz )
labels_qr, indices_qr = roi.extract_label_indices( label_array_qr )
num_qz = len(np.unique( labels_qz ))
num_qr = len(np.unique( labels_qr ))
num_qzr = len(np.unique( labels_qzr ))
In [47]:
num_qz,num_qr,num_qzr
Out[47]:
In [48]:
fig, ax = plt.subplots()
#im=ax.imshow(alphaf, origin='lower' ,cmap='viridis',norm= LogNorm(vmin=0.0001,vmax=2.00))
im=ax.imshow(label_array_qz, origin='lower' ,cmap='viridis',vmin=0,vmax= None )
fig.colorbar(im)
ax.set_title( 'Q-z_label')
plt.show()
In [49]:
fig, ax = plt.subplots()
#im=ax.imshow(alphaf, origin='lower' ,cmap='viridis',norm= LogNorm(vmin=0.0001,vmax=2.00))
im=ax.imshow(label_array_qr, origin='lower' ,cmap='viridis',vmin=0,vmax= None )
fig.colorbar(im)
ax.set_title( 'Q-r_label')
plt.show()
In [50]:
boxes = label_array_qzr
box_maskr = boxes*maskr
In [51]:
qind, pixelist = roi.extract_label_indices( box_maskr )
noqs = len( np.unique(qind) )
nopr = np.bincount(qind, minlength=(noqs+1))[1:]
In [52]:
nopr
Out[52]:
In [54]:
# plot the figure
fig, axes = plt.subplots(figsize=(8,8))
axes.set_title("Labeled Array on Averaged Data")
im,im_label = show_label_array_on_image(axes, avg_imgr, box_maskr, imshow_cmap='viridis',
cmap='Paired',
vmin=0.01, vmax=30. , origin="lower")
#rwidth = 200
#x1,x2 = [center[1] - rwidth, center[1] + rwidth]
#y1,y2 = [center[0] - rwidth, center[0] + rwidth]
#axes.set_xlim( [x1,x2])
#axes.set_ylim( [y1,y2])
#fig.colorbar(im)
fig.colorbar(im_label)
plt.show()
In [55]:
imgs_ =imgs
imgsr = Reverse_Coordinate(imgs_, maskr)
In [56]:
t0 = time.time()
data_pixel = Get_Pixel_Array( imgsr, pixelist).get_data()
run_time(t0)
In [57]:
max_inten_ring =2
In [58]:
pixelist_qi = np.where( qind == max_inten_ring )[0]
data_pixel_qi = data_pixel[:,pixelist_qi]
In [59]:
data_pixel_qi.shape
Out[59]:
In [60]:
fig, ax = plt.subplots(figsize=(8,6))
ax.set_ylabel('Pixel')
ax.set_xlabel('Frame')
ax.set_title('Kymograph')
im = ax.imshow(data_pixel_qi.T, cmap='viridis', vmax=1.0)
fig.colorbar( im )
ax.set_aspect(1.)
plt.show()
In [61]:
fig, ax = plt.subplots(figsize=(8,6))
ax.set_ylabel('Pixel')
ax.set_xlabel('Frame')
ax.set_title('Kymograph_4000-6000')
im = ax.imshow(data_pixel_qi[4000:6000,:].T, cmap='viridis', vmax=1.0)
fig.colorbar( im )
ax.set_aspect(.1)
plt.show()
In [62]:
mean_inten = get_mean_intensity( data_pixel, qind)
In [63]:
times = np.arange( mean_inten[1].shape[0] ) #*timeperframe # get the time for each frame
fig, ax = plt.subplots(figsize=(8, 6))
ax.set_title("Mean intensity of each box")
for i in range( num_qzr ):
ax.plot(times, mean_inten[i+1], '--o', label="Box "+str(i+1))
ax.set_xlabel("Frame")
ax.set_ylabel("Mean Intensity")
ax.set_ylim(0, 2.5)
ax.legend( loc='best', fontsize = 6)
plt.show()
In [127]:
mask_data = np.arange( len(data_pixel))
mask_data_ = np.delete( mask_data, bad_frames)
In [336]:
#mask_data_
In [339]:
#mean_inten[1][:1000].mean()
In [177]:
K_mean = np.array( [mean_inten[i][mask_data_].mean() for i in list(mean_inten.keys() )] )
In [178]:
K_mean
Out[178]:
In [130]:
max_cts = data_pixel[mask_data_].max()
max_cts
Out[130]:
In [224]:
data_pixel[1000].max()
Out[224]:
In [225]:
max_cts =60
In [235]:
data_pixel.shape
Out[235]:
In [66]:
#max_cts = data_pixel.max()
#max_cts
Out[66]:
In [262]:
%run speckle.py
In [316]:
good_start = 0
good_end = 3000# if using Nimg, then calculate all the images
good_end = Nimg #hen calculate all the images
imgs_ =imgs[good_start: good_end]
imgsr = Reverse_Coordinate(imgs_, mask)
In [317]:
len(imgs_)
Out[317]:
In [319]:
time_steps = utils.geometric_series(2, len(imgs_) ) [:-3]
time_steps
Out[319]:
In [320]:
num_times = len(time_steps)
In [321]:
spe_cts_all, std_dev = xsvs( (imgsr,), np.int_(box_maskr), timebin_num=2,
number_of_img= len(imgs_), max_cts=int(max_cts+2), time_bin = time_steps,
bad_images=None, threshold = 5000 )
In [323]:
spe_cts_all.shape
Out[323]:
In [324]:
#np.save( path + 'uid_%s_spe_cts_all'%uid, spe_cts_all)
In [148]:
#spe_cts_all = np.load(path + 'uid_%s_spe_cts_all.npy'%uid )
In [ ]:
#Knorm_bin_edges, Knorm_bin_centers = speckle.normalize_bin_edges( len(time_steps), num_rings, K_mean, int(max_cts+2))
In [325]:
bin_edges, bin_centers, Knorm_bin_edges, Knorm_bin_centers = get_bin_edges(
len(time_steps), num_qzr, K_mean, int(max_cts+2) )
In [181]:
for qz_ind in range(num_qz):
fig = plt.figure(figsize=(10,12))
#fig = plt.figure()
title_qz = ' Qz= %.5f '%( qz_center[qz_ind]) + r'$\AA^{-1}$'
plt.title('uid= %s:--->'%uid + title_qz,fontsize=16, y =1.05)
#print (qz_ind,title_qz)
if num_qz!=1:plt.axis('off')
sx = int(round(np.sqrt(num_qr)) )
if num_qr%sx == 0:
sy = int(num_qr/sx)
else:
sy=int(num_qr/sx+1)
for sn in range(num_qr):
axes = fig.add_subplot(sx,sy,sn+1 )
for j in range(len(time_steps)):
#if sn == 0:
art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',
label=str(time_steps[j])+" ms")
#else:
#art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',)
axes.set_xlim(0, 3.5)
axes.legend(loc='best', fontsize = 6)
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
title_qr = " Qr= " + '%.5f '%( qr_center[sn]) + r'$\AA^{-1}$'
if num_qz==1:
title = 'uid= %s:--->'%uid + title_qz + '__' + title_qr
else:
title = title_qr
axes.set_title( title )
fig.tight_layout()
In [326]:
qz_ind =0
sn =3
fig = plt.figure(figsize=(8,6))
title_qz = ' Qz= %.5f '%( qz_center[qz_ind]) + r'$\AA^{-1}$'
#plt.title('uid= %s:--->'%uid + title_qz,fontsize=16, y =1.05)
axes = fig.add_subplot(111 )
for j in range(len(time_steps)):
art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',
label=str(time_steps[j])+" ms")
#else:
#art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',)
axes.set_xlim(0, 5.0)
axes.legend(loc='best', fontsize = 12)
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
title = 'uid= %s:--->'%uid + title_qz + '__' + title_qr
axes.set_title( title,fontsize=16, y =1.05)
fig.tight_layout()
$P(K)=\frac{\Gamma(K+M)}{\Gamma(K+1)\Gamma(M)}(\frac{M}{M+<K>})^M(\frac{<K>}{M+<K>})^K$
In [269]:
%run speckle.py
In [270]:
from lmfit import Model
from scipy.interpolate import UnivariateSpline
g_mod = Model(gamma_dist, indepdent_vars=['K'])
#g_mod = Model( gamma_dist )
n_mod = Model(nbinom_dist)
p_mod = Model(poisson_dist)
dc_mod = Model(diff_mot_con_factor)
In [271]:
#gamma_dist??
In [202]:
def get_roi(data, threshold=1e-3):
roi = np.where(data>threshold)
if len(roi[0]) > len(data)-2:
roi = (np.array(roi[0][:-2]),)
elif len(roi[0]) < 2:
roi = np.where(data>=0)
return roi[0]
In [207]:
#get_roi(data=spe_cts_all[0,3], threshold=1e-8)
Out[207]:
In [217]:
#Knorm_bin_edges[0,0][:100]
In [305]:
K_mean
Out[305]:
In [306]:
K_mean.shape
Out[306]:
In [330]:
bin_edges[0,3]
Out[330]:
In [331]:
Knorm_bin_edges[0,3][:10]
Out[331]:
In [329]:
K_mean[3]
Out[329]:
In [334]:
qz_ind =0
sn =3
fig = plt.figure(figsize=(8,6))
title_qz = ' Qz= %.5f '%( qz_center[qz_ind]) + r'$\AA^{-1}$'
#plt.title('uid= %s:--->'%uid + title_qz,fontsize=16, y =1.05)
axes = fig.add_subplot(111 )
for j in range(len(time_steps)):
art, = axes.plot(bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',
label=str(time_steps[j])+" ms")
#else:
#art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',)
axes.set_xlim(0, 50.0)
axes.legend(loc='best', fontsize = 12)
axes.set_xlabel("K")
axes.set_ylabel("P(K)")
title = 'uid= %s:--->'%uid + title_qz + '__' + title_qr
axes.set_title( title,fontsize=16, y =1.05)
fig.tight_layout()
In [363]:
qz_ind =0
sn =3
fig = plt.figure(figsize=(8,6))
title_qz = ' Qz= %.5f '%( qz_center[qz_ind]) + r'$\AA^{-1}$'
#plt.title('uid= %s:--->'%uid + title_qz,fontsize=16, y =1.05)
axes = fig.add_subplot(111 )
for j in range(len(time_steps)):
roi = get_roi(data=spe_cts_all[j, sn], threshold=1e-4)
#print (roi)
result_n = n_mod.fit(spe_cts_all[j, sn][roi],
bin_values=bin_edges[j, sn][:-1][roi], K=K_mean[j] * 2**j, M=100)
M_val=result_n.best_values['M']
K_val=result_n.best_values['K']
print (M_val,K_val)
x=bin_edges[j, sn][:-1]
fx = nbinom_dist( x, K_val, M_val )
if j ==10:
print (roi, M_val, K_val)
art, = axes.plot(x, spe_cts_all[j, sn], 'or',label=str(time_steps[j])+" ms")
art, = axes.plot( x ,fx, '-b' )
axes.set_xlim(0, 300)
axes.legend(loc='best', fontsize = 12)
In [350]:
x
Out[350]:
In [362]:
qz_ind =0
sn =3
fig = plt.figure(figsize=(8,6))
title_qz = ' Qz= %.5f '%( qz_center[qz_ind]) + r'$\AA^{-1}$'
#plt.title('uid= %s:--->'%uid + title_qz,fontsize=16, y =1.05)
axes = fig.add_subplot(111 )
for j in range(len(time_steps)):
roi = get_roi(data=spe_cts_all[j, sn], threshold=1e-4)
#print (roi)
result_n = n_mod.fit(spe_cts_all[j, sn][roi],
bin_values=bin_edges[j, sn][:-1][roi], K=K_mean[j] * 2**j, M=100)
M_val=result_n.best_values['M']
K_val=result_n.best_values['K']
print (M_val,K_val)
# Using the best K and M values interpolate and get more values for fitting curve
#if j<=3:population_N = 10000
#else:population_N=len(Knorm_bin_edges[j, sn][:-1])
population_N = 1000*2**j
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, sn][:-1]), population_N )
fitx = np.linspace(0, max(bin_edges[j, sn][:-1]), population_N )
fity = nbinom_dist( fitx, K_val, M_val ) # M and K are fitted best values
if j == 0:
art, = axes.plot( fitx_,fity, '-', label="nbinom")
else:
art, = axes.plot( fitx_,fity, '-')
art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], 'o',
label=str(time_steps[j])+" ms")
#else:
#art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], '-o',)
axes.set_xlim(0, 3.50)
axes.legend(loc='best', fontsize = 12)
if j==0:axes.annotate(r'K='+'%.3f\n'%( K_val) +r'M='+'%.3f'%(M_val),
xy=(.25, 0.85),
xycoords='axes fraction', fontsize=14,
horizontalalignment='right', verticalalignment='bottom')
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
title = 'uid= %s:--->'%uid + title_qz + '__' + title_qr
axes.set_title( title,fontsize=16, y =1.05)
fig.tight_layout()
In [ ]:
In [ ]:
In [195]:
M_val = {}
K_val = {}
for qz_ind in range(num_qz):
fig = plt.figure(figsize=(10,12))
#fig = plt.figure()
title_qz = ' Qz= %.5f '%( qz_center[qz_ind]) + r'$\AA^{-1}$'
plt.title('uid= %s:--->'%uid + title_qz,fontsize=16, y =1.05)
#print (qz_ind,title_qz)
if num_qz!=1:plt.axis('off')
sx = int(round(np.sqrt(num_qr)) )
if num_qr%sx == 0:
sy = int(num_qr/sx)
else:
sy=int(num_qr/sx+1)
for sn in range(num_qr):
axes = fig.add_subplot(sx,sy,sn+1 )
M_val[sn]=[]
K_val[sn]=[]
for j in range(len(time_steps)):
result_n = n_mod.fit(spe_cts_all[j, sn],
bin_values=bin_edges[j, sn][:-1],
K=5 * 2**j, M=12)
M_val[sn].append(result_n.best_values['M'])
K_val[sn].append(result_n.best_values['K'])
# Using the best K and M values interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, sn][:-1]), 1000 )
fitx = np.linspace(0, max(bin_edges[j, sn][:-1]), 1000 )
fity = nbinom_dist( fitx, K_val[sn][j], M_val[sn][j] ) # M and K are fitted best values
if j == 0:
art, = axes.plot( fitx_,fity, '-', label="nbinom")
else:
art, = axes.plot( fitx_,fity, '-')
if sn == 0:
art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], 'o',
label=str(time_steps[j])+" ms")
else:
art, = axes.plot(Knorm_bin_edges[j, sn][:-1], spe_cts_all[j, sn], 'o',)
axes.set_xlim(0, 3.5)
axes.legend(loc='best', fontsize = 6)
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
title_qr = " Qr= " + '%.5f '%( qr_center[sn]) + r'$\AA^{-1}$'
if num_qz==1:
title = 'uid= %s:--->'%uid + title_qz + '__' + title_qr
else:
title = title_qr
axes.set_title( title )
fig.tight_layout()
In [196]:
plt.close('all')
In [ ]:
In [85]:
M_val = {}
K_val = {}
sx = int(round(np.sqrt(num_rings)))
if num_rings%sx == 0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
fig = plt.figure(figsize=(10, 6))
plt.title('uid= %s'%uid+" Fitting with Negative Binomial Function", fontsize=20, y=1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
M_val[i]=[]
K_val[i]=[]
for j in range( num_times ):
# find the best values for K and M from fitting
result_n = n_mod.fit(spe_cts_all[j, i],
bin_values=bin_edges[j, i][:-1],
K=5 * 2**j, M=12)
M_val[i].append(result_n.best_values['M'])
K_val[i].append(result_n.best_values['K'])
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
# Using the best K and M values interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, i][:-1]), 1000 )
fitx = np.linspace(0, max(bin_edges[j, i][:-1]), 1000 )
fity = nbinom_dist( fitx, K_val[i][j], M_val[i][j] ) # M and K are fitted best values
if j == 0:
art, = axes.plot( fitx_,fity, '-b', label="nbinom")
else:
art, = axes.plot( fitx_,fity, '-b')
if i==0:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
label=str(time_steps[j])+" ms")
else:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
)
axes.set_xlim(0, 3.5)
# Annotate the best K and M values on the plot
axes.annotate(r'K='+'%.3f'%( K_val[i][0]) +','+r'M='+'%.3f'%(M_val[i][0]),
xy=(1, 0.25),
xycoords='axes fraction', fontsize=10,
horizontalalignment='right', verticalalignment='bottom')
axes.set_title("Q "+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 6)
plt.show()
fig.tight_layout()
In [75]:
[K_val[i][0] for i in range(num_rings)]
Out[75]:
In [84]:
#[K_val[i][3] for i in range(num_rings)]
In [76]:
K_mean
Out[76]:
In [116]:
def get_roi(data, threshold=1e-3):
roi = np.where(data>threshold)
if len(roi[0]) > len(data)-2:
roi = (np.array(roi[0][:-2]),)
elif len(roi[0]) < 2:
roi = np.where(data>=0)
return roi[0]
In [111]:
roi = get_roi(data=spe_cts_all[j, i], threshold=1e-3)
In [120]:
Mg_val = {}
fig = plt.figure(figsize=(10, 6))
plt.title('uid= %s'%uid+ " Fitting with Gamma Function", fontsize=20, y=1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
Mg_val[i] = []
for j in range( 0, 6 ):
roi = get_roi(data=spe_cts_all[j, i], threshold=1e-7)
# find the best value for M from fitting
result_g = g_mod.fit(spe_cts_all[j, i][roi] ,
bin_values=bin_edges[j, i][:-1][roi] ,
K=K_mean[i]*2**j, M= 20 )
Mg_val[i].append(result_g.best_values['M'])
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
# Using the best M value interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, i][:-1]), 1000 )
fitx = np.linspace(0, max(bin_edges[j, i][:-1]), 1000 )
fity = gamma_dist( fitx, K_mean[i]*2**j, Mg_val[i][j] )
if j == 0:
art, = axes.plot( fitx_,fity, '-g',label="gamma")
else:
art, = axes.plot( fitx_,fity, '-g' )
if i==0:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
label=str(time_steps[j])+" ms")
else:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
)
axes.set_xlim(0, 3.5)
axes.set_ylim(0, .8)
# Annotate the best M values on the plot
axes.annotate(r'M='+'%.3f'%(Mg_val[i][0]), xy=(1, 0.25),
xycoords='axes fraction', fontsize=10,
horizontalalignment='right', verticalalignment='bottom')
axes.set_title("Q "+ '%.5f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 5)
fig.tight_layout()
plt.show()
In [90]:
Kp_val = {}
sx = int(round(np.sqrt(num_rings)))
if num_rings%sx == 0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
fig = plt.figure(figsize=(10,6))
plt.title('uid= %s'%uid+" Fitting with Poission Function", fontsize=20, y=1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
Kp_val[i] = []
for j in range( 6 ):
roi = get_roi(data=spe_cts_all[j, i], threshold=1e-8)
# find the best value for K from fitting
result_p = p_mod.fit(spe_cts_all[j, i][roi],
bin_values=bin_edges[j, i][:-1][roi],
K=K_mean[i]*2**j)
Kp_val[i].append(result_p.best_values['K'])
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
# Using the best K value interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, i][:-1]), 10000 ) # these x values to plot
fitx = np.linspace(0, max(bin_edges[j, i][:-1]), 10000 ) # these x values for interpolation
fity = poisson_dist(fitx, Kp_val[i][j] )
if j == 0:
art, = axes.plot(fitx_, fity, '-r', label="poisson")
else:
art, = axes.plot(fitx_, fity, '-r')
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
label=str(time_steps[j])+" ms")
axes.set_xlim(0, 3.5)
# Annotate the best K values on the plot
axes.annotate(r'K='+'%.3f'%(Kp_val[i][0]), xy=(1, 0.25),
xycoords='axes fraction', fontsize=16,
horizontalalignment='best', verticalalignment='best')
axes.set_title("Q "+ '%.5f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 5)
plt.show()
fig.tight_layout()
In [128]:
contrast_factor = np.zeros((num_rings, num_times))
for i in range(num_rings):
for j in range(num_times):
contrast_factor[i, j] = 1/M_val[i][j]
#contrast_factor
In [129]:
contrast_factor[0, :]
Out[129]:
In [130]:
times = np.array( time_steps ) * exposuretime
In [131]:
sx = int( round (np.sqrt(num_rings)) )
if num_rings%sx==0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
#fig = plt.figure(figsize=(14, 10))
fig = plt.figure()
plt.title('uid= %s'%uid + "Contrast Factor for Each Q Rings", fontsize=14, y =1.08)
plt.axis('off')
for sn in range(num_rings):
ax = fig.add_subplot(sx, sy, sn+1 )
y= contrast_factor[sn, :]
#ax.plot(contrast_factor[i, :], "o", label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times, y, "-o",
label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.set_title(" Q= " + '%.5f '%(q_ring_center[sn]) + r'$\AA^{-1}$')
ax.set_ylim([min(y)*.95, max(y[1:]) *1.05])
fig.tight_layout()
In [132]:
relax_rate = []
sx = int( round (np.sqrt(num_rings)) )
if num_rings%sx==0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
#fig = plt.figure(figsize=(14, 10))
fig = plt.figure()
plt.title('uid= %s'%uid + "Contrast Factor for Each Q Rings", fontsize=14, y =1.08)
plt.axis('off')
for sn in range(num_rings):
ax = fig.add_subplot(sx, sy, sn+1 )
time_steps_ = time_steps[1:]
times_ = times[1:]
y= contrast_factor[sn, 1:]
result_dc = dc_mod.fit(y, times=time_steps_,
relaxation_rate=1.0, contrast_factor=0.78, cf_baseline=0)
relax_rate.append(result_dc.best_values['relaxation_rate'])
#ax.plot(contrast_factor[i, :], "o", label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times_, y, "o",
label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times_, result_dc.best_fit, '-r')
ax.set_title(" Q= " + '%.5f '%(q_ring_center[sn]) + r'$\AA^{-1}$')
ax.set_ylim([min(y)*.95, max(y[1:]) *1.05])
txts = r'$\gamma$' + r'$ = %.5f$'%(relax_rate[sn]) + r'$ s^{-1}$'
ax.text(x =0.015, y=.55, s=txts, fontsize=14, transform=ax.transAxes)
fig.tight_layout()
In [133]:
relax_rate
Out[133]:
In [134]:
fig, ax = plt.subplots(figsize=(6, 6))
ax.plot(q_ring_center**2, relax_rate, 'ro', ls='--')
ax.set_ylabel('Relaxation rate 'r'$\gamma$'"($s^{-1}$)")
ax.set_xlabel("$q^2$"r'($\AA^{-2}$)')
plt.show()
In [135]:
D0 = np.polyfit(q_ring_center**2, relax_rate, 1)
gmfit = np.poly1d(D0)
print ('The fitted diffusion coefficient D0 is: %.2E'%D0[0] + r'$\AA^{-2}$')
In [136]:
fig, ax = plt.subplots(figsize=(8, 8) )
ax.plot(q_ring_center**2, relax_rate, 'ro', ls='--')
ax.plot(q_ring_center**2, gmfit(q_ring_center**2), ls='-')
ax.set_ylabel('Relaxation rate 'r'$\gamma$'"($s^{-1}$)")
ax.set_xlabel("$q^2$"r'($\AA^{-2}$)')
plt.show()
In [126]:
tg2 = np.loadtxt( path + 'g2_%s-%s--%s.txt'%(uid,good_start, good_end))
lags, g2 = tg2[:,0], tg2[:,1:]
In [ ]:
In [143]:
sx = int( round (np.sqrt(num_rings)) )
if num_rings%sx==0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
#fig = plt.figure(figsize=(14, 10))
fig = plt.figure()
plt.title('uid= %s'%uid + "__g2-&-beta for Each Q Rings", fontsize=14, y =1.08)
plt.axis('off')
for sn in range(num_rings):
ax = fig.add_subplot(sx, sy, sn+1 )
y= contrast_factor[sn, :]
#ax.plot(contrast_factor[i, :], "o", label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times, y, "-bo",
label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
y2=g2[:, sn]
ax.semilogx(lags, y2 -1 , '-rs', markersize=6)
ax.set_title(" Q= " + '%.5f '%(q_ring_center[sn]) + r'$\AA^{-1}$')
ax.set_ylim([min(y2-1)*.95, max(y2[1:]-1) *1.05])
fig.tight_layout()
In [ ]: