"This notebook corresponds to version {{ version }} of the pipeline tool: https://github.com/NSLS-II/pipelines"
In [1]:
from databroker import DataBroker as db, get_images, get_table, get_events
from filestore.api import register_handler, deregister_handler
from filestore.retrieve import _h_registry, _HANDLER_CACHE
In [2]:
hdr = db[{{ uid }}]
In [3]:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import time
from ipywidgets import interact
In [6]:
cd /home/yuzhang/chx-pipelines/Develops/
In [5]:
cd /XF11ID/analysis/Analysis_Pipelines/Develop/
In [8]:
%run develop.py
%run two_time.py
In [9]:
%matplotlib notebook
#%matplotlib inline
In [10]:
BlueScan = True
DirectAcq = False
detector = 'eiger_4M_cam_img_image_lightfield' #for 4M
In [11]:
if BlueScan:
uid = '54614d43'
#uid = '95782687'
uid = '95782687'
uid= 'ff9f20c0'
uid='71720966'
uid='1663d34a'
uid = 'f505e052-3baa-47d4-bdc4-61c2eb1bcc7a' #sid= 551, 1%PEG,
uid='ee6975a1-9161' #1% wt PEG
else:
uid = '/XF11ID/data/2015/11/23/d01ab510-3cf3-4719-bee3_795_master.h5'
In [16]:
if BlueScan:
hdr = db[uid]
ev, = get_events( hdr, [detector] )
imgs = ev['data'][detector]
else:
imgs = Images(uid)
print (imgs)
Nimg=len(imgs)
In [17]:
if BlueScan:
from datetime import datetime
dt = datetime.fromtimestamp(hdr['start'].time)
path ='/XF11ID/analysis' + '/%s/%s/%s/' % (dt.year, dt.month, dt.day)
else:
path ='/XF11ID/analysis/2015/11/23/'
path
Out[17]:
In [18]:
imgs.md
Out[18]:
In [19]:
# The physical size of the pixels
dpix = imgs.md['x_pixel_size'] * 1000.
lambda_ = imgs.md['incident_wavelength'] # wavelegth of the X-rays in Angstroms
Ldet = 4812. # detector to sample distance (mm)
exposuretime= imgs.md['count_time']
acquisition_period = imgs.md['frame_time']
# deadtime= 0 # 60e-6
# timeperframe = exposuretime + deadtime
timeperframe = acquisition_period
timeperframe, exposuretime
Out[19]:
In [20]:
mask = np.load( path + str(uid)+ "_mask.npy")
In [21]:
maskr = mask[::-1,:]
In [22]:
fig, ax = plt.subplots()
im=ax.imshow(maskr, origin='lower' ,vmin=0,vmax=1,cmap='viridis')
fig.colorbar(im)
plt.show()
In [23]:
def view_image(i):
fig, ax = plt.subplots()
ax.imshow(imgs[i]*mask, interpolation='nearest', cmap='viridis',
origin='lower', norm= LogNorm(vmin=0.001, vmax=1e1) )
ax.set_title("Browse the Image Stack")
plt.show()
In [24]:
#interact(view_image, i=(0, Nimg-1))
In [25]:
def view_image(sleeps=1, ims=0, ime = 1):
fig, ax = plt.subplots()
for i in range( ims, ime ):
im=ax.imshow(imgs[i]*mask, interpolation='nearest', cmap='viridis',
origin='lower', norm= LogNorm( vmin=0.01, vmax=10 ) )
ax.set_title("images_%s"%i)
time.sleep( sleeps )
plt.draw()
#fig.colorbar(im)
#view_image(.2, 0, 2)
In [26]:
kymo_sum = np.load( path + str(uid)+"_kymo_sum.npy" )
In [27]:
bad_frames = np.where( kymo_sum > 1e5)[0]
bad_frames
Out[27]:
In [28]:
fig, axes = plt.subplots( )
axes.plot( kymo_sum, '-go' )
ax.set_ylabel('Intensity')
ax.set_xlabel('Frame')
ax.set_title('Kymograph_sum')
plt.show()
In [29]:
avg_img = np.load( path + str(uid)+"_avg_img.npy" )
avg_imgm = avg_img * mask
In [30]:
avg_imgr = avg_img[::-1,:]
avg_imgmr = avg_imgm[::-1,:]
In [31]:
fig, ax = plt.subplots()
im = ax.imshow(avg_imgmr, cmap='viridis',origin='lower',
norm= LogNorm(vmin=0.001, vmax=1e1))
ax.set_title("Masked Averaged Image_Reversed")
fig.colorbar(im)
plt.show()
In [32]:
imgs.md['beam_center_x'], imgs.md['beam_center_y']
Out[32]:
In [33]:
#center = (imgs.md['beam_center_x'], imgs.md['beam_center_y'])
center = [ 2167 - 336, 849] #for not reversed
center = [ 336, 849] #for reversed
center = [ 2167- 1830, 846]
center
Out[33]:
In [34]:
fig, ax = plt.subplots()
im = ax.imshow(avg_imgr, cmap='viridis',origin='lower', norm= LogNorm(vmin=0.001, vmax=1e1))
radius = 54
circle=plt.Circle( [center[1], center[0]], radius, color='b', alpha=1.0, lw=2, edgecolor='r',fill=False)
plt.gcf().gca().add_artist(circle)
ax.set_title("Masked Averaged Image_Reversed")
fig.colorbar(im)
rwidth = 100
x1,x2 = [center[1] - rwidth, center[1] + rwidth]
y1,y2 = [center[0] - rwidth, center[0] + rwidth]
ax.set_xlim( [x1,x2])
ax.set_ylim( [y1,y2])
plt.show()
In [35]:
bin_centers, ring_averages= circular_average(avg_imgr, center, pixel_size=(dpix, dpix), mask= maskr)
# convert to q (reciprocal space)
two_theta = utils.radius_to_twotheta(Ldet, bin_centers)
q_val = utils.twotheta_to_q(two_theta, lambda_)
In [36]:
fig,axes = plt.subplots(figsize=(8, 6))
axes.semilogy(q_val, ring_averages, '-o')
axes.set_title('Circular Average')
axes.set_ylabel('Ring Avearge')
axes.set_xlabel('Q ('r'$\AA^{-1}$ )')
axes.set_xlim(0.001, 0.02)
axes.set_ylim(0.001, 10.0)
plt.show()
In [37]:
fig,axes = plt.subplots(figsize=(8, 6))
axes.semilogy(bin_centers/dpix, ring_averages, '-o')
axes.set_title('Circular Average')
axes.set_ylabel('Ring Avearge')
axes.set_xlabel('Bin Centers, (pixel)')
axes.set_xlim(30, 250)
axes.set_ylim(0.001, 10.0)
plt.show()
In [38]:
inner_radius = 58 # radius of the first ring
width = 2 # width of each ring
spacing = (166 - 58)/9 - 2 # spacing between rings
num_rings = 6 # number of rings
# find the edges of the required rings
edges = roi.ring_edges(inner_radius, width, spacing, num_rings)
edges
Out[38]:
In [39]:
two_theta = utils.radius_to_twotheta(Ldet, edges*dpix)
q_ring_val = utils.twotheta_to_q(two_theta, lambda_)
q_ring_center = np.average(q_ring_val, axis=1)
q_ring_center
Out[39]:
In [40]:
rings = roi.rings(edges, center, avg_imgmr.shape)
ring_mask = rings*maskr
In [41]:
ring_mask
Out[41]:
In [42]:
qind, pixelist = roi.extract_label_indices( ring_mask )
noqs = len( np.unique(qind) )
nopr = np.bincount(qind, minlength=(noqs+1))[1:]
In [43]:
qind
Out[43]:
In [44]:
nopr
Out[44]:
In [45]:
pixel = roi.roi_pixel_values(avg_imgmr, ring_mask, [2] )
fig,ax=plt.subplots()
ax.plot( pixel[0][0] ,'bo', ls='-' )
Out[45]:
In [46]:
fig, axes = plt.subplots( figsize=(8, 6))
#axes.semilogy(q_val, ring_averages, '-o')
axes.plot(q_val, ring_averages, '-o')
axes.set_title('Circular Average with the Q ring values')
axes.set_ylabel('Ring Avearge')
axes.set_xlabel('Bin Centers 'r'$\AA^{-1}$')
axes.set_xlim(0.00, 0.02)
axes.set_ylim(0, 6)
for i in range(num_rings):
axes.axvline(q_ring_center[i])
plt.show()
In [47]:
#plt.close('all')
In [49]:
# plot the figure
fig, axes = plt.subplots(figsize=(8,8))
axes.set_title("Labeled Array on Averaged Data")
im,im_label = show_label_array_on_image(axes, avg_imgmr, ring_mask, imshow_cmap='viridis',
cmap='Paired',
vmin=0.01, vmax=5, origin="lower")
#rwidth = 200
#x1,x2 = [center[1] - rwidth, center[1] + rwidth]
#y1,y2 = [center[0] - rwidth, center[0] + rwidth]
#axes.set_xlim( [x1,x2])
#axes.set_ylim( [y1,y2])
#fig.colorbar(im)
rwidth = 200
x1,x2 = [center[1] - rwidth, center[1] + rwidth]
y1,y2 = [center[0] - rwidth, center[0] + rwidth]
axes.set_xlim( [x1,x2])
axes.set_ylim( [y1,y2])
fig.colorbar(im_label)
plt.show()
In [50]:
imgs_ =imgs
imgsr = Reverse_Coordinate(imgs_, mask)
In [51]:
max_inten_ring =2
In [49]:
#kymo = roi.kymograph(imgsr, ring_mask, num = max_inten_ring)
In [50]:
t0 = time.time()
data_pixel = Get_Pixel_Array( imgsr, pixelist).get_data()
run_time(t0)
In [206]:
#np.save( path + 'uid_%s_data_pixel'%uid, data_pixel)
In [52]:
data_pixel = np.load( path + 'uid_%s_data_pixel.npy'%uid)
In [53]:
pixelist_qi = np.where( qind == max_inten_ring)[0]
data_pixel_qi = data_pixel[:,pixelist_qi]
In [54]:
fig, ax = plt.subplots(figsize=(8,6))
ax.set_ylabel('Pixel')
ax.set_xlabel('Frame')
ax.set_title('Kymograph')
im = ax.imshow(data_pixel_qi.T, cmap='viridis', vmax=5.0)
fig.colorbar( im )
ax.set_aspect(30.)
plt.show()
In [55]:
mean_inten = get_mean_intensity( data_pixel, qind)
In [56]:
times = np.arange( mean_inten[1].shape[0] ) #*timeperframe # get the time for each frame
fig, ax = plt.subplots(figsize=(8, 6))
ax.set_title("Mean intensity of each ring")
for i in range(num_rings):
ax.plot(times, mean_inten[i+1], '--o', label="Ring "+str(i+1))
ax.set_xlabel("Frame")
ax.set_ylabel("Mean Intensity")
ax.legend(loc='best')
plt.show()
In [58]:
K_mean = np.array( [mean_inten[i].mean() for i in list(mean_inten.keys() )] )
In [59]:
K_mean
Out[59]:
In [60]:
max_cts = data_pixel.max()
max_cts
Out[60]:
In [61]:
%run speckle.py
In [62]:
good_start = 0
good_end = 10# if using Nimg, then calculate all the images
good_end = Nimg #hen calculate all the images
imgs_ =imgs[good_start: good_end]
imgsr = Reverse_Coordinate(imgs_, mask)
In [63]:
len(imgs_)
Out[63]:
In [64]:
time_steps = utils.geometric_series(2, len(imgs_) )
time_steps
Out[64]:
In [65]:
#time_steps = utils.geometric_series(2, 600 )
#time_steps
In [66]:
num_times = len(time_steps)
In [94]:
spe_cts_all, std_dev = xsvs( (imgsr,), np.int_(ring_mask), timebin_num=2,
number_of_img= len(imgs_), max_cts=int(max_cts+2), bad_images=None, threshold = 5000 )
In [209]:
#np.save( path + 'uid_%s_spe_cts_all'%uid, spe_cts_all)
In [67]:
spe_cts_all = np.load(path + 'uid_%s_spe_cts_all.npy'%uid )
In [ ]:
#Knorm_bin_edges, Knorm_bin_centers = speckle.normalize_bin_edges( len(time_steps), num_rings, K_mean, int(max_cts+2))
In [68]:
bin_edges, bin_centers, Knorm_bin_edges, Knorm_bin_centers = get_bin_edges(
len(time_steps), num_rings, K_mean, int(max_cts+2) )
In [69]:
sx = int(round(np.sqrt(num_rings)) )
if num_rings%sx == 0:
sy = int(num_rings/sx)
else:
sy=int(num_rings/sx+1)
fig = plt.figure(figsize=(10,6))
plt.title('uid= %s'%uid,fontsize=20, y =1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
for j in range(len(time_steps)):
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
art, = axes.plot(Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], '-o',
label=str(time_steps[j])+" ms")
axes.set_xlim(0, 2.5)
axes.set_title("Q "+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 6)
plt.show()
fig.tight_layout()
In [70]:
if False:
sx = int(round(np.sqrt(num_rings)) )
if num_rings%sx == 0:
sy = int(num_rings/sx)
else:
sy=int(num_rings/sx+1)
fig = plt.figure(figsize=(10, 6))
plt.title('uid= %s'%uid,fontsize=20, y =1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
for j in range(len(time_steps)):
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
art = axes.errorbar(Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i],
std_dev[j, i], fmt='-o',label=str(time_steps[j])+" ms")
axes.set_xlim(0, 2.5)
axes.set_title("Q "+ '%.3f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 6)
plt.show()
fig.tight_layout()
$P(K)=\frac{\Gamma(K+M)}{\Gamma(K+1)\Gamma(M)}(\frac{M}{M+<K>})^M(\frac{<K>}{M+<K>})^K$
In [101]:
%run speckle.py
In [102]:
from lmfit import Model
from scipy.interpolate import UnivariateSpline
g_mod = Model(gamma_dist, indepdent_vars=['K'])
#g_mod = Model( gamma_dist )
n_mod = Model(nbinom_dist)
p_mod = Model(poisson_dist)
dc_mod = Model(diff_mot_con_factor)
In [96]:
#gamma_dist??
In [85]:
M_val = {}
K_val = {}
sx = int(round(np.sqrt(num_rings)))
if num_rings%sx == 0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
fig = plt.figure(figsize=(10, 6))
plt.title('uid= %s'%uid+" Fitting with Negative Binomial Function", fontsize=20, y=1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
M_val[i]=[]
K_val[i]=[]
for j in range( num_times ):
# find the best values for K and M from fitting
result_n = n_mod.fit(spe_cts_all[j, i],
bin_values=bin_edges[j, i][:-1],
K=5 * 2**j, M=12)
M_val[i].append(result_n.best_values['M'])
K_val[i].append(result_n.best_values['K'])
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
# Using the best K and M values interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, i][:-1]), 1000 )
fitx = np.linspace(0, max(bin_edges[j, i][:-1]), 1000 )
fity = nbinom_dist( fitx, K_val[i][j], M_val[i][j] ) # M and K are fitted best values
if j == 0:
art, = axes.plot( fitx_,fity, '-b', label="nbinom")
else:
art, = axes.plot( fitx_,fity, '-b')
if i==0:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
label=str(time_steps[j])+" ms")
else:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
)
axes.set_xlim(0, 3.5)
# Annotate the best K and M values on the plot
axes.annotate(r'K='+'%.3f'%( K_val[i][0]) +','+r'M='+'%.3f'%(M_val[i][0]),
xy=(1, 0.25),
xycoords='axes fraction', fontsize=10,
horizontalalignment='right', verticalalignment='bottom')
axes.set_title("Q "+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 6)
plt.show()
fig.tight_layout()
In [75]:
[K_val[i][0] for i in range(num_rings)]
Out[75]:
In [84]:
#[K_val[i][3] for i in range(num_rings)]
In [76]:
K_mean
Out[76]:
In [116]:
def get_roi(data, threshold=1e-3):
roi = np.where(data>threshold)
if len(roi[0]) > len(data)-2:
roi = (np.array(roi[0][:-2]),)
elif len(roi[0]) < 2:
roi = np.where(data>=0)
return roi[0]
In [111]:
roi = get_roi(data=spe_cts_all[j, i], threshold=1e-3)
In [120]:
Mg_val = {}
fig = plt.figure(figsize=(10, 6))
plt.title('uid= %s'%uid+ " Fitting with Gamma Function", fontsize=20, y=1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
Mg_val[i] = []
for j in range( 0, 6 ):
roi = get_roi(data=spe_cts_all[j, i], threshold=1e-7)
# find the best value for M from fitting
result_g = g_mod.fit(spe_cts_all[j, i][roi] ,
bin_values=bin_edges[j, i][:-1][roi] ,
K=K_mean[i]*2**j, M= 20 )
Mg_val[i].append(result_g.best_values['M'])
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
# Using the best M value interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, i][:-1]), 1000 )
fitx = np.linspace(0, max(bin_edges[j, i][:-1]), 1000 )
fity = gamma_dist( fitx, K_mean[i]*2**j, Mg_val[i][j] )
if j == 0:
art, = axes.plot( fitx_,fity, '-g',label="gamma")
else:
art, = axes.plot( fitx_,fity, '-g' )
if i==0:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
label=str(time_steps[j])+" ms")
else:
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
)
axes.set_xlim(0, 3.5)
axes.set_ylim(0, .8)
# Annotate the best M values on the plot
axes.annotate(r'M='+'%.3f'%(Mg_val[i][0]), xy=(1, 0.25),
xycoords='axes fraction', fontsize=10,
horizontalalignment='right', verticalalignment='bottom')
axes.set_title("Q "+ '%.5f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 5)
fig.tight_layout()
plt.show()
In [90]:
Kp_val = {}
sx = int(round(np.sqrt(num_rings)))
if num_rings%sx == 0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
fig = plt.figure(figsize=(10,6))
plt.title('uid= %s'%uid+" Fitting with Poission Function", fontsize=20, y=1.02)
plt.axes(frameon=False)
plt.xticks([])
plt.yticks([])
for i in range(num_rings):
Kp_val[i] = []
for j in range( 6 ):
roi = get_roi(data=spe_cts_all[j, i], threshold=1e-8)
# find the best value for K from fitting
result_p = p_mod.fit(spe_cts_all[j, i][roi],
bin_values=bin_edges[j, i][:-1][roi],
K=K_mean[i]*2**j)
Kp_val[i].append(result_p.best_values['K'])
axes = fig.add_subplot(sx, sy, i+1 )
axes.set_xlabel("K/<K>")
axes.set_ylabel("P(K)")
# Using the best K value interpolate and get more values for fitting curve
fitx_ = np.linspace(0, max(Knorm_bin_edges[j, i][:-1]), 10000 ) # these x values to plot
fitx = np.linspace(0, max(bin_edges[j, i][:-1]), 10000 ) # these x values for interpolation
fity = poisson_dist(fitx, Kp_val[i][j] )
if j == 0:
art, = axes.plot(fitx_, fity, '-r', label="poisson")
else:
art, = axes.plot(fitx_, fity, '-r')
art, = axes.plot( Knorm_bin_edges[j, i][:-1], spe_cts_all[j, i], 'o',
label=str(time_steps[j])+" ms")
axes.set_xlim(0, 3.5)
# Annotate the best K values on the plot
axes.annotate(r'K='+'%.3f'%(Kp_val[i][0]), xy=(1, 0.25),
xycoords='axes fraction', fontsize=16,
horizontalalignment='best', verticalalignment='best')
axes.set_title("Q "+ '%.5f '%(q_ring_center[i])+ r'$\AA^{-1}$')
axes.legend(loc='best', fontsize = 5)
plt.show()
fig.tight_layout()
In [128]:
contrast_factor = np.zeros((num_rings, num_times))
for i in range(num_rings):
for j in range(num_times):
contrast_factor[i, j] = 1/M_val[i][j]
#contrast_factor
In [129]:
contrast_factor[0, :]
Out[129]:
In [130]:
times = np.array( time_steps ) * exposuretime
In [131]:
sx = int( round (np.sqrt(num_rings)) )
if num_rings%sx==0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
#fig = plt.figure(figsize=(14, 10))
fig = plt.figure()
plt.title('uid= %s'%uid + "Contrast Factor for Each Q Rings", fontsize=14, y =1.08)
plt.axis('off')
for sn in range(num_rings):
ax = fig.add_subplot(sx, sy, sn+1 )
y= contrast_factor[sn, :]
#ax.plot(contrast_factor[i, :], "o", label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times, y, "-o",
label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.set_title(" Q= " + '%.5f '%(q_ring_center[sn]) + r'$\AA^{-1}$')
ax.set_ylim([min(y)*.95, max(y[1:]) *1.05])
fig.tight_layout()
In [132]:
relax_rate = []
sx = int( round (np.sqrt(num_rings)) )
if num_rings%sx==0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
#fig = plt.figure(figsize=(14, 10))
fig = plt.figure()
plt.title('uid= %s'%uid + "Contrast Factor for Each Q Rings", fontsize=14, y =1.08)
plt.axis('off')
for sn in range(num_rings):
ax = fig.add_subplot(sx, sy, sn+1 )
time_steps_ = time_steps[1:]
times_ = times[1:]
y= contrast_factor[sn, 1:]
result_dc = dc_mod.fit(y, times=time_steps_,
relaxation_rate=1.0, contrast_factor=0.78, cf_baseline=0)
relax_rate.append(result_dc.best_values['relaxation_rate'])
#ax.plot(contrast_factor[i, :], "o", label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times_, y, "o",
label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times_, result_dc.best_fit, '-r')
ax.set_title(" Q= " + '%.5f '%(q_ring_center[sn]) + r'$\AA^{-1}$')
ax.set_ylim([min(y)*.95, max(y[1:]) *1.05])
txts = r'$\gamma$' + r'$ = %.5f$'%(relax_rate[sn]) + r'$ s^{-1}$'
ax.text(x =0.015, y=.55, s=txts, fontsize=14, transform=ax.transAxes)
fig.tight_layout()
In [133]:
relax_rate
Out[133]:
In [134]:
fig, ax = plt.subplots(figsize=(6, 6))
ax.plot(q_ring_center**2, relax_rate, 'ro', ls='--')
ax.set_ylabel('Relaxation rate 'r'$\gamma$'"($s^{-1}$)")
ax.set_xlabel("$q^2$"r'($\AA^{-2}$)')
plt.show()
In [135]:
D0 = np.polyfit(q_ring_center**2, relax_rate, 1)
gmfit = np.poly1d(D0)
print ('The fitted diffusion coefficient D0 is: %.2E'%D0[0] + r'$\AA^{-2}$')
In [136]:
fig, ax = plt.subplots(figsize=(8, 8) )
ax.plot(q_ring_center**2, relax_rate, 'ro', ls='--')
ax.plot(q_ring_center**2, gmfit(q_ring_center**2), ls='-')
ax.set_ylabel('Relaxation rate 'r'$\gamma$'"($s^{-1}$)")
ax.set_xlabel("$q^2$"r'($\AA^{-2}$)')
plt.show()
In [126]:
tg2 = np.loadtxt( path + 'g2_%s-%s--%s.txt'%(uid,good_start, good_end))
lags, g2 = tg2[:,0], tg2[:,1:]
In [ ]:
In [143]:
sx = int( round (np.sqrt(num_rings)) )
if num_rings%sx==0:
sy = int(num_rings/sx)
else:
sy = int(num_rings/sx+1)
#fig = plt.figure(figsize=(14, 10))
fig = plt.figure()
plt.title('uid= %s'%uid + "__g2-&-beta for Each Q Rings", fontsize=14, y =1.08)
plt.axis('off')
for sn in range(num_rings):
ax = fig.add_subplot(sx, sy, sn+1 )
y= contrast_factor[sn, :]
#ax.plot(contrast_factor[i, :], "o", label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
ax.semilogx(times, y, "-bo",
label="Q ="+ '%.4f '%(q_ring_center[i])+ r'$\AA^{-1}$')
y2=g2[:, sn]
ax.semilogx(lags, y2 -1 , '-rs', markersize=6)
ax.set_title(" Q= " + '%.5f '%(q_ring_center[sn]) + r'$\AA^{-1}$')
ax.set_ylim([min(y2-1)*.95, max(y2[1:]-1) *1.05])
fig.tight_layout()
In [ ]: