This notebook is to test the implementation of the Randomized Dependence Coefficient test using permutations to compute the null distribution.
In [ ]:
%load_ext autoreload
%autoreload 2
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import fsic.util as util
import fsic.data as data
import fsic.feature as fea
import fsic.kernel as kernel
import fsic.indtest as it
import fsic.glo as glo
import scipy.stats as stats
In [ ]:
# font options
font = {
#'family' : 'normal',
#'weight' : 'bold',
'size' : 16
}
plt.rc('font', **font)
plt.rc('lines', linewidth=2)
#matplotlib.rc('text', usetex=True)
#matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
In [ ]:
def get_quad_psfunc():
"""
Return a PairedSource to generate y = x^2 + Gaussian noise.
"""
px = lambda n: np.random.rand(n, 1)*8 - 4
f = lambda x: 0.2*x**2 + np.random.randn(x.shape[0], 1)
return data.PSFunc(f, px)
In [ ]:
# paired source
alpha = 0.05
n = 1000
seed = 17
dx = 10
dy = 5
#ps = data.PSIndSameGauss(dx, dy)
ps = get_quad_psfunc()
#ps = data.PS2DUnifRotate(angle=np.pi/3)
#ps = data.PSIndUnif(xlb=[0, 3], xub=[1, 10], ylb=[-5, 5], yub=[8, 10])
#ps = data.PS2DSinFreq(freq=2)
pdata = ps.sample(n, seed=seed)
#tr, te = pdata.split_tr_te(tr_proportion=0.5, seed=10)
In [ ]:
# get the median distances
X, Y = pdata.xy()
# copula transform to both X and Y
cop_map = fea.MarginalCDFMap()
Xcdf = cop_map.gen_features(X)
Ycdf = cop_map.gen_features(Y)
medx = util.meddistance(Xcdf, subsample=1000)
medy = util.meddistance(Ycdf, subsample=1000)
sigmax2 = medx**2
sigmay2 = medy**2
feature_pairs = 10
fmx = fea.RFFKGauss(sigmax2, n_features=feature_pairs, seed=seed+1)
fmy = fea.RFFKGauss(sigmay2, n_features=feature_pairs, seed=seed+2)
rdc = it.RDCPerm(fmx, fmy, n_permute=300, alpha=alpha, seed=seed+89)
rdc_result = rdc.perform_test(pdata)
rdc_result
In [ ]:
n_permute = 800
with util.ContextTimer() as t1:
# naive permutation
naive_rdcs = it.RDCPerm._list_permute_naive(X, Y, fmx, fmy, n_permute=n_permute, seed=seed+1, use_copula=True)
pass
with util.ContextTimer() as t2:
# fast permutation
fast_rdcs = it.RDCPerm.list_permute(X, Y, fmx, fmy, n_permute=n_permute, seed=seed+1,
use_copula=True, cca_reg=1e-5)
print 'naive permutation took: %.3g s'%t1.secs
print 'fast permutation took: %.3g s'%t2.secs
In [ ]:
# histograms
plt.figure(figsize=(10, 5))
plt.hist(naive_rdcs, alpha=0.5, label='Naive', bins=15, normed=True)
plt.hist(fast_rdcs, alpha=0.5, label='Fast', bins=15, normed=True)
plt.legend()
In [ ]:
In [ ]:
In [ ]:
In [ ]: