Many of the exciting deep learning algorithms for computer vision require massive datasets for training. The most popular benchmark dataset, ImageNet, for example, contains one million images from one thousand categories. But for any practical problem, we typically have access to comparatively small datasets. In these cases, if we were to train a neural network's weights from scratch, starting from random initialized parameters, we would overfit the training set badly.
One approach to get around this problem is to first pretrain a deep net on a large-scale dataset, like ImageNet. Then, given a new dataset, we can start with these pretrained weights when training on our new task. This process commonly called "fine-tuning". There are anumber of variations of fine-tuning. Sometimes, the initial neural network is used only as a feature extractor. That means that we freeze every layer prior to the output layer and simply learn a new output layer. In another document, we explained how to do this kind of feature extraction. Another approach is to update all of networks weights for the new task, and that's the appraoch we demonstrate in this document.
To fine-tune a network, we must first replace the last fully-connected layer with a new one that outputs the desired number of classes. We initialize its weights randomly. Then we continue training as normal. Sometimes it's common use a smaller learning rate based on the intuition that we may already be close to a good result.
In this demonstration, we'll fine-tune a model pre-trained on ImageNet to the smaller caltech-256 dataset. Following this example, you can finetune to other datasets, even for strikingly different applications such as face identification.
We will show that, even with simple hyper-parameters setting, we can match and even outperform state-of-the-art results on caltech-256.
Network | Accuracy |
---|---|
Resnet-50 | 77.4% |
Resnet-152 | 86.4% |
We follow the standard protocol to sample 60 images from each class as the training set, and the rest for the validation set. We resize images into 256x256 size and pack them into the rec file. The scripts to prepare the data is as following.
wget http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar
tar -xf 256_ObjectCategories.tar
mkdir -p caltech_256_train_60
for i in 256_ObjectCategories/*; do
c=`basename $i`
mkdir -p caltech_256_train_60/$c
for j in `ls $i/*.jpg | shuf | head -n 60`; do
mv $j caltech_256_train_60/$c/
done
done
python ~/mxnet/tools/im2rec.py --list True --recursive True caltech-256-60-train caltech_256_train_60/
python ~/mxnet/tools/im2rec.py --list True --recursive True caltech-256-60-val 256_ObjectCategories/
python ~/mxnet/tools/im2rec.py --resize 256 --quality 90 --num-thread 16 caltech-256-60-val 256_ObjectCategories/
python ~/mxnet/tools/im2rec.py --resize 256 --quality 90 --num-thread 16 caltech-256-60-train caltech_256_train_60/
The following codes download the pre-generated rec files. It may take a few minutes.
In [1]:
import os, urllib
def download(url):
filename = url.split("/")[-1]
if not os.path.exists(filename):
urllib.urlretrieve(url, filename)
download('http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec')
download('http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec')
Next we define the function which returns the data iterators:
In [2]:
import mxnet as mx
def get_iterators(batch_size, data_shape=(3, 224, 224)):
train = mx.io.ImageRecordIter(
path_imgrec = './caltech-256-60-train.rec',
data_name = 'data',
label_name = 'softmax_label',
batch_size = batch_size,
data_shape = data_shape,
shuffle = True,
rand_crop = True,
rand_mirror = True)
val = mx.io.ImageRecordIter(
path_imgrec = './caltech-256-60-val.rec',
data_name = 'data',
label_name = 'softmax_label',
batch_size = batch_size,
data_shape = data_shape,
rand_crop = False,
rand_mirror = False)
return (train, val)
We then download a pretrained 50-layer ResNet model and load into memory. Note that if load_checkpoint
reports an error, we can remove the downloaded files and try get_model
again.
In [3]:
def get_model(prefix, epoch):
download(prefix+'-symbol.json')
download(prefix+'-%04d.params' % (epoch,))
get_model('http://data.mxnet.io/models/imagenet/resnet/50-layers/resnet-50', 0)
sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-50', 0)
In [4]:
def get_fine_tune_model(symbol, arg_params, num_classes, layer_name='flatten0'):
"""
symbol: the pre-trained network symbol
arg_params: the argument parameters of the pre-trained model
num_classes: the number of classes for the fine-tune datasets
layer_name: the layer name before the last fully-connected layer
"""
all_layers = sym.get_internals()
net = all_layers[layer_name+'_output']
net = mx.symbol.FullyConnected(data=net, num_hidden=num_classes, name='fc1')
net = mx.symbol.SoftmaxOutput(data=net, name='softmax')
new_args = dict({k:arg_params[k] for k in arg_params if 'fc1' not in k})
return (net, new_args)
Now we create a module. We pass the argument parameters of the pre-trained model to replace all parameters except for the last fully-connected layer. For the last fully-connected layer, we use an initializer to initialize.
In [5]:
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
def fit(symbol, arg_params, aux_params, train, val, batch_size, num_gpus):
devs = [mx.gpu(i) for i in range(num_gpus)]
mod = mx.mod.Module(symbol=new_sym, context=devs)
mod.fit(train, val,
num_epoch=8,
arg_params=arg_params,
aux_params=aux_params,
allow_missing=True,
batch_end_callback = mx.callback.Speedometer(batch_size, 10),
kvstore='device',
optimizer='sgd',
optimizer_params={'learning_rate':0.01},
initializer=mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2),
eval_metric='acc')
metric = mx.metric.Accuracy()
return mod.score(val, metric)
Then we can start training. We use AWS EC2 g2.8xlarge, which has 8 GPUs.
In [6]:
# @@@ AUTOTEST_OUTPUT_IGNORED_CELL
num_classes = 256
batch_per_gpu = 16
num_gpus = 8
(new_sym, new_args) = get_fine_tune_model(sym, arg_params, num_classes)
batch_size = batch_per_gpu * num_gpus
(train, val) = get_iterators(batch_size)
mod_score = fit(new_sym, new_args, aux_params, train, val, batch_size, num_gpus)
assert mod_score > 0.77, "Low training accuracy."
As you can see, after only 8 epochs, we can get 78% validation accuracy. This matches the state-of-the-art results training on caltech-256 alone, e.g. VGG.
Next, we try to use another pretrained model. This model was trained on the complete Imagenet dataset, which is 10x larger than the Imagenet 1K classes version, and uses a 3x deeper Resnet architecture.
In [8]:
# @@@ AUTOTEST_OUTPUT_IGNORED_CELL
get_model('http://data.mxnet.io/models/imagenet-11k/resnet-152/resnet-152', 0)
sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 0)
(new_sym, new_args) = get_fine_tune_model(sym, arg_params, num_classes)
mod_score = fit(new_sym, new_args, aux_params, train, val, batch_size, num_gpus)
assert mod_score > 0.86, "Low training accuracy."
As can be seen, even for a single data epoch, it reaches 83% validation accuracy. After 8 epoches, the validation accuracy increases to 86.4%.