8Day subsampling on the OceanColor Dataset


In [6]:
import xarray as xr
import numpy as np
import pandas as pd
%matplotlib inline
from matplotlib import pyplot as plt
from dask.diagnostics import ProgressBar
import seaborn as sns
from matplotlib.colors import LogNorm

Load data from disk

We already downloaded a subsetted MODIS-Aqua chlorophyll-a dataset for the Arabian Sea.

We can read all the netcdf files into one xarray Dataset using the open_mfsdataset function. Note that this does not load the data into memory yet. That only happens when we try to access the values.


In [7]:
ds_8day = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_8D.nc')
ds_daily = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_D.nc')
both_datasets = [ds_8day, ds_daily]

How much data is contained here? Let's get the answer in MB.


In [8]:
print([(ds.nbytes / 1e6) for ds in both_datasets])


[534.295504, 4241.4716]

The 8-day dataset is ~534 MB while the daily dataset is 4.2 GB. These both easily fit in RAM. So let's load them all into memory


In [9]:
[ds.load() for ds in both_datasets]


Out[9]:
[<xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 667)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...,
 <xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 5295)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...]

Fix bad data

In preparing this demo, I noticed that small number of maps had bad data--specifically, they contained large negative values of chlorophyll concentration. Looking closer, I realized that the land/cloud mask had been inverted. So I wrote a function to invert it back and correct the data.


In [10]:
def fix_bad_data(ds):
    # for some reason, the cloud / land mask is backwards on some data
    # this is obvious because there are chlorophyl values less than zero
    bad_data = ds.chlor_a.groupby('time').min() < 0
    # loop through and fix
    for n in np.nonzero(bad_data.values)[0]:
        data = ds.chlor_a[n].values 
        ds.chlor_a.values[n] = np.ma.masked_less(data, 0).filled(np.nan)

In [11]:
[fix_bad_data(ds) for ds in both_datasets]


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in less
  if not reflexive
Out[11]:
[None, None]

In [12]:
ds_8day.chlor_a>0


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[12]:
<xarray.DataArray 'chlor_a' (time: 667, lat: 276, lon: 360)>
array([[[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ...,  True, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False,  True],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False,  True,  True]],

       ..., 
       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]]], dtype=bool)
Coordinates:
  * lat      (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 27.37 ...
  * lon      (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 45.63 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...

Count the number of ocean data points

First we have to figure out the land mask. Unfortunately it doesn't come with the dataset. But we can infer it by counting all the points that have at least one non-nan chlorophyll value.


In [13]:
(ds_8day.chlor_a>0).sum(dim='time').plot()


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[13]:
<matplotlib.collections.QuadMesh at 0x11948c630>

In [14]:
#  find a mask for the land
ocean_mask = (ds_8day.chlor_a>0).sum(dim='time')>0
#ocean_mask = (ds_daily.chlor_a>0).sum(dim='time')>0
num_ocean_points = ocean_mask.sum().values  # compute the total nonzeros regions(data point)
ocean_mask.plot()
plt.title('%g total ocean points' % num_ocean_points)


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[14]:
<matplotlib.text.Text at 0x13d566550>

In [15]:
#ds_8day

In [16]:
#ds_daily

In [17]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time='2002-11-18',method='nearest').plot(norm=LogNorm())
#ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[17]:
<matplotlib.collections.QuadMesh at 0x11c2bc550>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [18]:
#list(ds_daily.groupby('time')) # take a look at what's inside

Now we count up the number of valid points in each snapshot and divide by the total number of ocean points.


In [19]:
'''
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 144, lon: 276, rgb: 3, time: 4748)
'''
ds_daily.groupby('time').count() # information from original data


Out[19]:
<xarray.Dataset>
Dimensions:  (time: 5295)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
Data variables:
    chlor_a  (time) int64 658 1170 1532 2798 2632 1100 1321 636 2711 1163 ...
    palette  (time) int64 768 768 768 768 768 768 768 768 768 768 768 768 ...

In [ ]:


In [20]:
ds_daily.chlor_a.groupby('time').count()/float(num_ocean_points)


Out[20]:
<xarray.DataArray 'chlor_a' (time: 5295)>
array([ 0.01053255,  0.01872809,  0.02452259, ...,  0.        ,
        0.        ,  0.        ])
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...

In [21]:
count_8day,count_daily = [ds.chlor_a.groupby('time').count()/float(num_ocean_points)
                            for ds in (ds_8day,ds_daily)]

In [22]:
#count_8day = ds_8day.chl_ocx.groupby('time').count()/float(num_ocean_points)
#coundt_daily = ds_daily.chl_ocx.groupby('time').count()/float(num_ocean_points)

#count_8day, coundt_daily = [ds.chl_ocx.groupby('time').count()/float(num_ocean_points)
#                            for ds in ds_8day, ds_daily] # not work in python 3

In [23]:
plt.figure(figsize=(12,4))
count_8day.plot(color='k')
count_daily.plot(color='r')

plt.legend(['8 day','daily'])


Out[23]:
<matplotlib.legend.Legend at 0x11dc18780>

Seasonal Climatology


In [24]:
count_8day_clim, coundt_daily_clim = [count.groupby('time.month').mean()  # monthly data
                                      for count in (count_8day, count_daily)]

In [68]:
print()




In [69]:
# mean value of the monthly data on the count of nonzeros
plt.figure(figsize=(12,4))
count_8day_clim.plot(color='k')
coundt_daily_clim.plot(color='r')
plt.legend(['8 day', 'daily'])


Out[69]:
<matplotlib.legend.Legend at 0x11de12588>

From the above figure, we see that data coverage is highest in the winter (especially Feburary) and lowest in summer.

Maps of individual days

Let's grab some data from Febrauary and plot it.


In [70]:
target_date = '2003-02-15'
plt.figure(figsize=(8,6))
ds_8day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[70]:
<matplotlib.collections.QuadMesh at 0x11de26240>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [71]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[71]:
<matplotlib.collections.QuadMesh at 0x11acc6748>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [72]:
ds_daily.chlor_a[0].sel_points(lon=[65, 70], lat=[16, 18], method='nearest')   # the time is selected!
#ds_daily.chl_ocx[0].sel_points(time= times, lon=lons, lat=times, method='nearest')


Out[72]:
<xarray.DataArray 'chlor_a' (points: 2)>
array([ nan,  nan])
Coordinates:
    time     datetime64[ns] 2002-07-04
    lat      (points) float64 16.04 18.04
    lon      (points) float64 65.04 70.04
  * points   (points) int64 0 1

In [73]:
#ds_daily.chlor_a.sel_points?

In [74]:
ds_8day = ds_daily.resample('8D', dim='time')
ds_8day


Out[74]:
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 662)
Coordinates:
  * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
  * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
  * rgb            (rgb) int64 0 1 2
  * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
  * time           (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...
Data variables:
    chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
    palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...

In [75]:
plt.figure(figsize=(8,6))
ds_8day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[75]:
<matplotlib.collections.QuadMesh at 0x11ad8b0f0>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [76]:
# check the range for the longitude
print(ds_8day.lon.min(),'\n' ,ds_8day.lat.min())


<xarray.DataArray 'lon' ()>
array(45.04166793823242) 
 <xarray.DataArray 'lat' ()>
array(5.041661739349365)

++++++++++++++++++++++++++++++++++++++++++++++

All GDP Floats

Load the float data

Map a (time, lon, lat) to a value on the cholorphlly value


In [77]:
# in the following we deal with the data from the gdp float
from buyodata import buoydata
import os

In [78]:
# a list of files
fnamesAll = ['./gdp_float/buoydata_1_5000.dat','./gdp_float/buoydata_5001_10000.dat','./gdp_float/buoydata_10001_15000.dat','./gdp_float/buoydata_15001_jun16.dat']

In [79]:
# read them and cancatenate them into one DataFrame
dfAll = pd.concat([buoydata.read_buoy_data(f) for f in fnamesAll])  # around 4~5 minutes

#mask = df.time>='2002-07-04' # we only have data after this data for chlor_a
dfvvAll = dfAll[dfAll.time>='2002-07-04']

sum(dfvvAll.time<'2002-07-04') # recheck whether the time is


Out[79]:
0

In [80]:
# process the data so that the longitude are all >0
print('before processing, the minimum longitude is%f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(), dfvvAll.lon.max()))
mask = dfvvAll.lon<0
dfvvAll.lon[mask] = dfvvAll.loc[mask].lon + 360
print('after processing, the minimum longitude is %f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(),dfvvAll.lon.max()) )

dfvvAll.describe()


before processing, the minimum longitude is0.0000004.3 and maximum is 360.0000004.3
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/ipykernel/__main__.py:4: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/core/generic.py:4695: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._update_inplace(new_data)
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2881: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  exec(code_obj, self.user_global_ns, self.user_ns)
after processing, the minimum longitude is 0.0000004.3 and maximum is 360.0000004.3
Out[80]:
id lat lon temp ve vn spd var_lat var_lon var_tmp
count 2.147732e+07 2.131997e+07 2.131997e+07 1.986179e+07 2.129142e+07 2.129142e+07 2.129142e+07 2.147732e+07 2.147732e+07 2.147732e+07
mean 1.765662e+06 -2.263128e+00 2.124412e+02 1.986121e+01 2.454172e-01 4.708192e-01 2.613427e+01 7.326258e+00 7.326555e+00 7.522298e+01
std 9.452835e+06 3.401115e+01 9.746941e+01 8.339498e+00 2.525050e+01 2.052160e+01 1.939087e+01 8.527853e+01 8.527851e+01 2.637454e+02
min 2.578000e+03 -7.764700e+01 0.000000e+00 -1.685000e+01 -2.916220e+02 -2.601400e+02 0.000000e+00 5.268300e-07 -3.941600e-02 1.001300e-03
25% 4.897500e+04 -3.186000e+01 1.490720e+02 1.437300e+01 -1.411400e+01 -1.044700e+01 1.290300e+01 4.366500e-06 7.512600e-06 1.435700e-03
50% 7.141300e+04 -4.920000e+00 2.153940e+02 2.214400e+01 -5.560000e-01 1.970000e-01 2.176700e+01 8.833600e-06 1.495800e-05 1.691700e-03
75% 1.094330e+05 2.756000e+01 3.064370e+02 2.688900e+01 1.356100e+01 1.109300e+01 3.405900e+01 1.833300e-05 3.627900e-05 2.294200e-03
max 6.399288e+07 8.989900e+01 3.600000e+02 4.595000e+01 4.417070e+02 2.783220e+02 4.421750e+02 1.000000e+03 1.000000e+03 1.000000e+03

In [81]:
# Select only the arabian sea region
arabian_sea = (dfvvAll.lon > 45) & (dfvvAll.lon< 75) & (dfvvAll.lat> 5) & (dfvvAll.lat <28)
# arabian_sea = {'lon': slice(45,75), 'lat': slice(5,28)} # later use this longitude and latitude
floatsAll = dfvvAll.loc[arabian_sea]   # directly use mask
print('dfvvAll.shape is %s, floatsAll.shape is %s' % (dfvvAll.shape, floatsAll.shape) )


dfvvAll.shape is (21477317, 11), floatsAll.shape is (111894, 11)

In [82]:
# avoid run this line repeatedly
# visualize the float around global region
fig, ax  = plt.subplots(figsize=(12,10))
dfvvAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[82]:
<matplotlib.axes._subplots.AxesSubplot at 0x1fafec7b8>

In [83]:
# pands dataframe cannot do the resamplingn properly
# cause we are really indexing on ['time','id'], pandas.dataframe.resample cannot do this
# TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'
print()




In [84]:
# dump the surface floater data from pandas.dataframe to xarray.dataset
floatsDSAll = xr.Dataset.from_dataframe(floatsAll.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
floatsDSAll


Out[84]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 17499)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-04T06:00:00 ...
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
Data variables:
    lat      (time, id) float64 nan 16.3 14.03 16.4 14.04 nan 20.11 nan ...
    lon      (time, id) float64 nan 66.23 69.48 64.58 69.51 nan 68.55 nan ...
    temp     (time, id) float64 nan nan nan 28.0 28.53 nan 28.93 nan 27.81 ...
    ve       (time, id) float64 nan 8.68 5.978 6.286 4.844 nan 32.9 nan ...
    vn       (time, id) float64 nan -13.18 -18.05 -7.791 -17.47 nan 15.81 ...
    spd      (time, id) float64 nan 15.78 19.02 10.01 18.13 nan 36.51 nan ...
    var_lat  (time, id) float64 nan 0.0002661 5.01e-05 5.018e-05 5.024e-05 ...
    var_lon  (time, id) float64 nan 0.0006854 8.851e-05 9.018e-05 8.968e-05 ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.003733 0.0667 nan 0.001683 ...

In [85]:
# resample on the xarray.dataset onto two-day frequency
floatsDSAll_8D =floatsDSAll.resample('8D', dim='time')
floatsDSAll_8D


Out[85]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 639)
Coordinates:
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...
Data variables:
    lat      (time, id) float64 nan 16.21 13.62 16.14 13.65 nan 20.09 nan ...
    spd      (time, id) float64 nan 8.832 18.7 19.48 17.6 nan 25.74 nan ...
    var_lat  (time, id) float64 nan 0.001424 6.2e-05 6.574e-05 5.391e-05 nan ...
    vn       (time, id) float64 nan -0.2949 -9.82 -12.91 -8.593 nan -1.964 ...
    temp     (time, id) float64 nan nan nan 27.81 28.57 nan 28.99 nan 27.65 ...
    lon      (time, id) float64 nan 66.51 69.86 64.99 69.87 nan 69.35 nan ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.00364 0.08777 nan 0.001711 ...
    ve       (time, id) float64 nan 7.335 13.25 12.26 12.13 nan 24.29 nan ...
    var_lon  (time, id) float64 nan 0.005415 0.0001179 0.0001259 9.874e-05 ...

In [86]:
# transfer it back to pandas.dataframe for plotting
floatsDFAll_8D = floatsDSAll_8D.to_dataframe()
floatsDFAll_8D
floatsDFAll_8D = floatsDFAll_8D.reset_index()
floatsDFAll_8D
# visualize the subsamping of floats around arabian region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_8D.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[86]:
<matplotlib.axes._subplots.AxesSubplot at 0x11babdf28>

In [87]:
# get the value for the chllorophy for each data entry
floatsDFAll_8Dtimeorder = floatsDFAll_8D.sort_values(['time','id'],ascending=True)
floatsDFAll_8Dtimeorder # check whether it is time ordered!!
# should we drop nan to speed up??


Out[87]:
id time lat spd var_lat vn temp lon var_tmp ve var_lon
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
639 10206 2002-07-04 16.208687 8.832125 0.001424 -0.294906 NaN 66.510656 1000.000000 7.334875 0.005415
1278 10208 2002-07-04 13.617187 18.702906 0.000062 -9.820156 NaN 69.858594 1000.000000 13.248719 0.000118
1917 11089 2002-07-04 16.140125 19.484250 0.000066 -12.911969 27.807781 64.993937 0.003640 12.260094 0.000126
2556 15703 2002-07-04 13.648188 17.604156 0.000054 -8.592531 28.569812 69.867031 0.087771 12.131219 0.000099
3195 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3834 27069 2002-07-04 20.090281 25.743625 0.000054 -1.963906 28.985781 69.350187 0.001711 24.285875 0.000099
4473 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5112 28842 2002-07-04 18.663125 17.876969 0.000103 -7.667469 27.649500 60.820937 0.003330 3.765094 0.000218
5751 34159 2002-07-04 12.808719 35.638313 0.000061 14.802688 NaN 59.602656 1000.000000 31.401250 0.000116
6390 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7029 34210 2002-07-04 6.092000 25.260719 0.000064 -15.458906 26.541750 56.754250 0.003695 -2.609125 0.000125
7668 34211 2002-07-04 8.265656 27.956094 0.000055 -13.744125 28.372250 68.470625 0.003516 22.912125 0.000102
8307 34212 2002-07-04 6.659437 46.824937 0.000055 12.766750 28.576844 65.751156 0.003590 41.911531 0.000102
8946 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9585 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10224 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10863 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
11502 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
12141 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
12780 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
13419 34708 2002-07-04 10.218219 33.377594 0.000058 2.054469 27.259781 60.558000 0.001789 33.013969 0.000110
14058 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
14697 34710 2002-07-04 13.146719 46.721688 0.000052 -4.710250 31.146688 50.311875 0.001858 5.607969 0.000100
15336 34714 2002-07-04 13.736031 38.004406 0.000060 3.964156 27.743656 64.554750 0.001808 36.962156 0.000113
15975 34716 2002-07-04 7.701938 34.903438 0.000058 7.112344 28.789000 66.159969 0.001758 32.958500 0.000107
16614 34718 2002-07-04 15.600562 38.508094 0.000056 -31.845094 29.088344 72.890563 0.001709 20.738031 0.000105
17253 34719 2002-07-04 17.318281 27.892406 0.000058 -20.870063 28.957969 71.331469 0.001661 14.599125 0.000109
17892 34720 2002-07-04 14.194000 26.035375 0.000061 -21.496063 28.665031 69.435531 0.001797 11.059094 0.000113
18531 34721 2002-07-04 16.971531 13.515531 0.000061 -10.533031 27.911625 65.534344 0.001749 6.204906 0.000115
... ... ... ... ... ... ... ... ... ... ... ...
146969 3098682 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
147608 60073460 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
148247 60074440 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
148886 60077450 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
149525 60150420 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
150164 60454500 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
150803 60656200 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
151442 60657200 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
152081 60658190 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
152720 60659110 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
153359 60659120 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
153998 60659190 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
154637 60659200 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
155276 60940960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
155915 60940970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
156554 60941960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
157193 60941970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
157832 60942960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
158471 60942970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
159110 60943960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
159749 60943970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
160388 60944960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
161027 60944970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
161666 60945970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
162305 60946960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
162944 60947960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
163583 60947970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
164222 60948960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
164861 60950430 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN
165500 62321420 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN

165501 rows × 11 columns


In [88]:
floatsDFAll_8Dtimeorder.lon.dropna().shape  # the longitude data has lots of values (3855,)


Out[88]:
(3855,)

In [89]:
# a little test for the api in loops for the dataframe   
# check df.itertuples? it is faster and preserves the data format
'''
chl_ocx=[]
for row in floats_timeorder.itertuples():
    #print(row)
    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )
    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation
    chl_ocx.append(tmp)
floats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)
chl_ocx[0].to_series
'''


Out[89]:
"\nchl_ocx=[]\nfor row in floats_timeorder.itertuples():\n    #print(row)\n    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )\n    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation\n    chl_ocx.append(tmp)\nfloats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)\nchl_ocx[0].to_series\n"

In [90]:
# this one line avoid the list above
# it took a really long time for 2D interpolation, it takes an hour
tmpAll = ds_8day.chlor_a.sel_points(time=list(floatsDFAll_8Dtimeorder.time),lon=list(floatsDFAll_8Dtimeorder.lon), lat=list(floatsDFAll_8Dtimeorder.lat), method='nearest')
print('the count of nan vaues in tmpAll is',tmpAll.to_series().isnull().sum())


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less_equal
  indexer = np.where(op(left_distances, right_distances) |
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less
  indexer = np.where(op(left_distances, right_distances) |
the count of nan vaues in tmpAll is 163755

In [91]:
#print(tmpAll.dropna().shape)
tmpAll.to_series().dropna().shape  # (1746,) good values


Out[91]:
(1746,)

In [92]:
# tmp.to_series() to transfer it from xarray dataset to series
floatsDFAll_8Dtimeorder['chlor_a'] = pd.Series(np.array(tmpAll.to_series()), index=floatsDFAll_8Dtimeorder.index)
print("after editing the dataframe the nan values in 'chlor_a' is", floatsDFAll_8Dtimeorder.chlor_a.isnull().sum() )  # they should be the same values as above

# take a look at the data
floatsDFAll_8Dtimeorder

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_8Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a', cmap='RdBu_r', edgecolor='none', ax=ax)

def scale(x):
    logged = np.log10(x)
    return logged

#print(floatsAll_timeorder['chlor_a'].apply(scale))
floatsDFAll_8Dtimeorder['chlor_a_log10'] = floatsDFAll_8Dtimeorder['chlor_a'].apply(scale)
floatsDFAll_8Dtimeorder
#print("after the transformation the nan values in 'chlor_a_log10' is", floatsAll_timeorder.chlor_a_log10.isnull().sum() )

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_8Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
#floatsDFAll_8Dtimeorder.chlor_a.dropna().shape  # (1746,) 
floatsDFAll_8Dtimeorder.chlor_a_log10.dropna().shape  # (1746,)


after editing the dataframe the nan values in 'chlor_a' is 163755
Out[92]:
(1746,)

In [93]:
# take the diff of the chlor_a, and this has to be done in xarray
# transfer the dataframe into xarry dataset again
# take the difference
floatsDFAll_8Dtimeorder


Out[93]:
id time lat spd var_lat vn temp lon var_tmp ve var_lon chlor_a chlor_a_log10
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
639 10206 2002-07-04 16.208687 8.832125 0.001424 -0.294906 NaN 66.510656 1000.000000 7.334875 0.005415 NaN NaN
1278 10208 2002-07-04 13.617187 18.702906 0.000062 -9.820156 NaN 69.858594 1000.000000 13.248719 0.000118 NaN NaN
1917 11089 2002-07-04 16.140125 19.484250 0.000066 -12.911969 27.807781 64.993937 0.003640 12.260094 0.000126 NaN NaN
2556 15703 2002-07-04 13.648188 17.604156 0.000054 -8.592531 28.569812 69.867031 0.087771 12.131219 0.000099 NaN NaN
3195 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3834 27069 2002-07-04 20.090281 25.743625 0.000054 -1.963906 28.985781 69.350187 0.001711 24.285875 0.000099 NaN NaN
4473 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5112 28842 2002-07-04 18.663125 17.876969 0.000103 -7.667469 27.649500 60.820937 0.003330 3.765094 0.000218 NaN NaN
5751 34159 2002-07-04 12.808719 35.638313 0.000061 14.802688 NaN 59.602656 1000.000000 31.401250 0.000116 NaN NaN
6390 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
7029 34210 2002-07-04 6.092000 25.260719 0.000064 -15.458906 26.541750 56.754250 0.003695 -2.609125 0.000125 NaN NaN
7668 34211 2002-07-04 8.265656 27.956094 0.000055 -13.744125 28.372250 68.470625 0.003516 22.912125 0.000102 0.104210 -0.982091
8307 34212 2002-07-04 6.659437 46.824937 0.000055 12.766750 28.576844 65.751156 0.003590 41.911531 0.000102 NaN NaN
8946 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
9585 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
10224 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
10863 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
11502 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
12141 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
12780 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
13419 34708 2002-07-04 10.218219 33.377594 0.000058 2.054469 27.259781 60.558000 0.001789 33.013969 0.000110 NaN NaN
14058 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
14697 34710 2002-07-04 13.146719 46.721688 0.000052 -4.710250 31.146688 50.311875 0.001858 5.607969 0.000100 NaN NaN
15336 34714 2002-07-04 13.736031 38.004406 0.000060 3.964156 27.743656 64.554750 0.001808 36.962156 0.000113 NaN NaN
15975 34716 2002-07-04 7.701938 34.903438 0.000058 7.112344 28.789000 66.159969 0.001758 32.958500 0.000107 0.119733 -0.921786
16614 34718 2002-07-04 15.600562 38.508094 0.000056 -31.845094 29.088344 72.890563 0.001709 20.738031 0.000105 NaN NaN
17253 34719 2002-07-04 17.318281 27.892406 0.000058 -20.870063 28.957969 71.331469 0.001661 14.599125 0.000109 NaN NaN
17892 34720 2002-07-04 14.194000 26.035375 0.000061 -21.496063 28.665031 69.435531 0.001797 11.059094 0.000113 NaN NaN
18531 34721 2002-07-04 16.971531 13.515531 0.000061 -10.533031 27.911625 65.534344 0.001749 6.204906 0.000115 NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ...
146969 3098682 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
147608 60073460 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
148247 60074440 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
148886 60077450 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
149525 60150420 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
150164 60454500 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
150803 60656200 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
151442 60657200 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
152081 60658190 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
152720 60659110 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
153359 60659120 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
153998 60659190 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
154637 60659200 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
155276 60940960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
155915 60940970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
156554 60941960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
157193 60941970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
157832 60942960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
158471 60942970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
159110 60943960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
159749 60943970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
160388 60944960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
161027 60944970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
161666 60945970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
162305 60946960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
162944 60947960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
163583 60947970 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
164222 60948960 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
164861 60950430 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
165500 62321420 2016-06-24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

165501 rows × 13 columns


In [94]:
# unstack() will provide a 2d dataframe
# reset_index() will reset all the index as columns

In [95]:
# prepare the data in dataset and about to take the diff
tmp = xr.Dataset.from_dataframe(floatsDFAll_8Dtimeorder.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
# take the diff on the chlor_a
chlor_a_rate = tmp.diff(dim='time',n=1).chlor_a.to_series().reset_index()
# make the column to a proper name
chlor_a_rate.rename(columns={'chlor_a':'chl_rate'}, inplace='True')
chlor_a_rate


# merge the two dataframes {floatsDFAll_XDtimeorder; chlor_a_rate} into one dataframe based on the index {id, time} and use the left method
floatsDFAllRate_8Dtimeorder=pd.merge(floatsDFAll_8Dtimeorder,chlor_a_rate, on=['time','id'], how = 'left')
floatsDFAllRate_8Dtimeorder

# check 
print('check the sum of the chlor_a before the merge', chlor_a_rate.chl_rate.sum())
print('check the sum of the chlor_a after the merge',floatsDFAllRate_8Dtimeorder.chl_rate.sum())


# visualize the chlorophyll rate, it is *better* to visualize at this scale
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_8Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.8, vmax=0.8, edgecolor='none', ax=ax)

# visualize the chlorophyll rate on the log scale
floatsDFAllRate_8Dtimeorder['chl_rate_log10'] = floatsDFAllRate_8Dtimeorder['chl_rate'].apply(scale)
floatsDFAllRate_8Dtimeorder
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_8Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
floatsDFAllRate_8Dtimeorder.chl_rate.dropna().shape   # (1062,) data points
#floatsDFAllRate_8Dtimeorder.chl_rate_log10.dropna().shape   # (436,) data points..... notice, chl_rate can be negative, so do not take log10


check the sum of the chlor_a before the merge -25.070548981676524
check the sum of the chlor_a after the merge -25.070548981676524
Out[95]:
(1062,)

In [96]:
pd.to_datetime(floatsDFAllRate_8Dtimeorder.time)
type(pd.to_datetime(floatsDFAllRate_8Dtimeorder.time))
ts = pd.Series(0, index=pd.to_datetime(floatsDFAllRate_8Dtimeorder.time) ) # creat a target time series for masking purpose

# take the month out
month = ts.index.month 
# month.shape # a check on the shape of the month.
selector = ((11==month) | (12==month) | (1==month) | (2==month) | (3==month) )  
selector
print('shape of the selector', selector.shape)

print('all the data count in [11-01, 03-31]  is', floatsDFAllRate_8Dtimeorder[selector].chl_rate.dropna().shape) # total (692,)
print('all the data count is', floatsDFAllRate_8Dtimeorder.chl_rate.dropna().shape )   # total (1062,)


shape of the selector (165501,)
all the data count in [11-01, 03-31]  is (692,)
all the data count is (1062,)

In [97]:
# histogram for non standarized data
axfloat = floatsDFAllRate_8Dtimeorder[selector].chl_rate.dropna().hist(bins=100,range=[-0.3,0.3])
axfloat.set_title('8-Day chl_rate')


Out[97]:
<matplotlib.text.Text at 0x11dd28828>

In [98]:
# standarized series
ts = floatsDFAllRate_8Dtimeorder[selector].chl_rate.dropna()
ts_standardized = (ts - ts.mean())/ts.std()
axts = ts_standardized.hist(bins=100,range=[-0.3,0.3])
axts.set_title('8-Day standardized chl_rate')


Out[98]:
<matplotlib.text.Text at 0x1a38564e0>

In [99]:
# all the data
fig, axes = plt.subplots(nrows=8, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2017), axes.flat) :
    tmpyear = floatsDFAllRate_8Dtimeorder[ (floatsDFAllRate_8Dtimeorder.time > str(i))  & (floatsDFAllRate_8Dtimeorder.time < str(i+1)) ] # if year i
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)   # total is 1061
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r',vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)     
    
# remove the extra figure
ax = plt.subplot(8,2,16)
fig.delaxes(ax)


(46,)
(43,)
(5,)
(43,)
(103,)
(94,)
(139,)
(37,)
(64,)
(18,)
(37,)
(32,)
(229,)
(113,)
(58,)

In [100]:
fig, axes = plt.subplots(nrows=7, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2016), axes.flat) :
    tmpyear = floatsDFAllRate_8Dtimeorder[ (floatsDFAllRate_8Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_8Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)  # the total is 692
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)


(56,)
(0,)
(11,)
(74,)
(47,)
(109,)
(31,)
(49,)
(3,)
(35,)
(0,)
(125,)
(97,)
(55,)

In [ ]:


In [ ]:


In [101]:
# let's output the data as a csv or hdf file to disk to save the experiment time

df_list = []
for i in range(2002,2017) :
    tmpyear = floatsDFAllRate_8Dtimeorder[ (floatsDFAllRate_8Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_8Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    df_list.append(tmpyear)
    
df_tmp = pd.concat(df_list)
print('all the data count in [11-01, 03-31]  is ', df_tmp.chl_rate.dropna().shape) # again, the total is (692,)
df_chl_out_8D_modisa = df_tmp[~df_tmp.chl_rate.isnull()] # only keep the non-nan values
#list(df_chl_out_XD.groupby(['id']))   # can see the continuity pattern of the Lagarangian difference for each float id

# output to a csv or hdf file
df_chl_out_8D_modisa.head()


all the data count in [11-01, 03-31]  is  (692,)
Out[101]:
id time lat spd var_lat vn temp lon var_tmp ve var_lon chlor_a chlor_a_log10 chl_rate chl_rate_log10
3886 10206 2002-11-01 10.873656 11.188906 0.000352 6.509875 NaN 67.351188 1000.000000 -6.823625 0.000996 0.137771 -0.860842 -0.012681 NaN
3888 11089 2002-11-01 14.269219 13.679406 0.000057 4.337844 28.969813 65.099156 0.003679 -11.122000 0.000106 0.152450 -0.816873 0.027142 -1.566358
3908 34710 2002-11-01 17.038563 12.432687 0.000064 11.684344 28.970219 63.145031 0.001698 0.757312 0.000123 0.383868 -0.415819 0.059694 -1.224066
4145 10206 2002-11-09 11.155719 3.428062 0.000984 1.562844 NaN 67.108219 1000.000000 -0.786375 0.003551 0.132682 -0.877188 -0.005089 NaN
4147 11089 2002-11-09 14.220969 19.677781 0.000065 -6.951906 28.742188 64.193281 0.003868 -17.539250 0.000126 0.201879 -0.694909 0.049429 -1.306018

In [102]:
df_chl_out_8D_modisa.index.name = 'index'  # make it specific for the index name

# CSV CSV CSV CSV with specfic index
df_chl_out_8D_modisa.to_csv('df_chl_out_8D_modisa.csv', sep=',', index_label = 'index')

# load CSV output
test = pd.read_csv('df_chl_out_8D_modisa.csv', index_col='index')
test.head()


Out[102]:
id time lat spd var_lat vn temp lon var_tmp ve var_lon chlor_a chlor_a_log10 chl_rate chl_rate_log10
index
3886 10206 2002-11-01 10.873656 11.188906 0.000352 6.509875 NaN 67.351188 1000.000000 -6.823625 0.000996 0.137771 -0.860842 -0.012681 NaN
3888 11089 2002-11-01 14.269219 13.679406 0.000057 4.337844 28.969813 65.099156 0.003679 -11.122000 0.000106 0.152450 -0.816873 0.027142 -1.566358
3908 34710 2002-11-01 17.038563 12.432687 0.000064 11.684344 28.970219 63.145031 0.001698 0.757312 0.000123 0.383868 -0.415819 0.059694 -1.224066
4145 10206 2002-11-09 11.155719 3.428062 0.000984 1.562844 NaN 67.108219 1000.000000 -0.786375 0.003551 0.132682 -0.877188 -0.005089 NaN
4147 11089 2002-11-09 14.220969 19.677781 0.000065 -6.951906 28.742188 64.193281 0.003868 -17.539250 0.000126 0.201879 -0.694909 0.049429 -1.306018

In [ ]: