7Day subsampling on the OceanColor Dataset


In [1]:
import xarray as xr
import numpy as np
import pandas as pd
%matplotlib inline
from matplotlib import pyplot as plt
from dask.diagnostics import ProgressBar
import seaborn as sns
from matplotlib.colors import LogNorm


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.
  "`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)

Load data from disk

We already downloaded a subsetted MODIS-Aqua chlorophyll-a dataset for the Arabian Sea.

We can read all the netcdf files into one xarray Dataset using the open_mfsdataset function. Note that this does not load the data into memory yet. That only happens when we try to access the values.


In [2]:
ds_8day = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_8D.nc')
ds_daily = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_D.nc')
both_datasets = [ds_8day, ds_daily]

How much data is contained here? Let's get the answer in MB.


In [3]:
print([(ds.nbytes / 1e6) for ds in both_datasets])


[534.295504, 4241.4716]

The 8-day dataset is ~534 MB while the daily dataset is 4.2 GB. These both easily fit in RAM. So let's load them all into memory


In [4]:
[ds.load() for ds in both_datasets]


Out[4]:
[<xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 667)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...,
 <xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 5295)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...]

Fix bad data

In preparing this demo, I noticed that small number of maps had bad data--specifically, they contained large negative values of chlorophyll concentration. Looking closer, I realized that the land/cloud mask had been inverted. So I wrote a function to invert it back and correct the data.


In [5]:
def fix_bad_data(ds):
    # for some reason, the cloud / land mask is backwards on some data
    # this is obvious because there are chlorophyl values less than zero
    bad_data = ds.chlor_a.groupby('time').min() < 0
    # loop through and fix
    for n in np.nonzero(bad_data.values)[0]:
        data = ds.chlor_a[n].values 
        ds.chlor_a.values[n] = np.ma.masked_less(data, 0).filled(np.nan)

In [6]:
[fix_bad_data(ds) for ds in both_datasets]


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in less
  if not reflexive
Out[6]:
[None, None]

In [7]:
ds_8day.chlor_a>0


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[7]:
<xarray.DataArray 'chlor_a' (time: 667, lat: 276, lon: 360)>
array([[[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ...,  True, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False,  True],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False,  True,  True]],

       ..., 
       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]]], dtype=bool)
Coordinates:
  * lat      (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 27.37 ...
  * lon      (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 45.63 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...

Count the number of ocean data points

First we have to figure out the land mask. Unfortunately it doesn't come with the dataset. But we can infer it by counting all the points that have at least one non-nan chlorophyll value.


In [8]:
(ds_8day.chlor_a>0).sum(dim='time').plot()


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[8]:
<matplotlib.collections.QuadMesh at 0x119490cc0>

In [9]:
#  find a mask for the land
ocean_mask = (ds_8day.chlor_a>0).sum(dim='time')>0
#ocean_mask = (ds_daily.chlor_a>0).sum(dim='time')>0
num_ocean_points = ocean_mask.sum().values  # compute the total nonzeros regions(data point)
ocean_mask.plot()
plt.title('%g total ocean points' % num_ocean_points)


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[9]:
<matplotlib.text.Text at 0x109882470>

In [10]:
#ds_8day

In [11]:
#ds_daily

In [12]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time='2002-11-18',method='nearest').plot(norm=LogNorm())
#ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[12]:
<matplotlib.collections.QuadMesh at 0x11b252518>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [13]:
#list(ds_daily.groupby('time')) # take a look at what's inside

Now we count up the number of valid points in each snapshot and divide by the total number of ocean points.


In [14]:
'''
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 144, lon: 276, rgb: 3, time: 4748)
'''
ds_daily.groupby('time').count() # information from original data


Out[14]:
<xarray.Dataset>
Dimensions:  (time: 5295)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
Data variables:
    chlor_a  (time) int64 658 1170 1532 2798 2632 1100 1321 636 2711 1163 ...
    palette  (time) int64 768 768 768 768 768 768 768 768 768 768 768 768 ...

In [15]:
ds_daily.chlor_a.groupby('time').count()/float(num_ocean_points)


Out[15]:
<xarray.DataArray 'chlor_a' (time: 5295)>
array([ 0.01053255,  0.01872809,  0.02452259, ...,  0.        ,
        0.        ,  0.        ])
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...

In [16]:
count_8day,count_daily = [ds.chlor_a.groupby('time').count()/float(num_ocean_points)
                            for ds in (ds_8day,ds_daily)]

In [17]:
#count_8day = ds_8day.chl_ocx.groupby('time').count()/float(num_ocean_points)
#coundt_daily = ds_daily.chl_ocx.groupby('time').count()/float(num_ocean_points)

#count_8day, coundt_daily = [ds.chl_ocx.groupby('time').count()/float(num_ocean_points)
#                            for ds in ds_8day, ds_daily] # not work in python 3

In [18]:
plt.figure(figsize=(12,4))
count_8day.plot(color='k')
count_daily.plot(color='r')

plt.legend(['8 day','daily'])


Out[18]:
<matplotlib.legend.Legend at 0x11a195908>

Seasonal Climatology


In [19]:
count_8day_clim, coundt_daily_clim = [count.groupby('time.month').mean()  # monthly data
                                      for count in (count_8day, count_daily)]

In [20]:
# mean value of the monthly data on the count of nonzeros
plt.figure(figsize=(12,4))
count_8day_clim.plot(color='k')
coundt_daily_clim.plot(color='r')
plt.legend(['8 day', 'daily'])


Out[20]:
<matplotlib.legend.Legend at 0x11dc61978>

From the above figure, we see that data coverage is highest in the winter (especially Feburary) and lowest in summer.

Maps of individual days

Let's grab some data from Febrauary and plot it.


In [21]:
target_date = '2003-02-15'
plt.figure(figsize=(8,6))
ds_8day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[21]:
<matplotlib.collections.QuadMesh at 0x11d932da0>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [22]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[22]:
<matplotlib.collections.QuadMesh at 0x11d7adb38>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [23]:
ds_daily.chlor_a[0].sel_points(lon=[65, 70], lat=[16, 18], method='nearest')   # the time is selected!
#ds_daily.chl_ocx[0].sel_points(time= times, lon=lons, lat=times, method='nearest')


Out[23]:
<xarray.DataArray 'chlor_a' (points: 2)>
array([ nan,  nan])
Coordinates:
    time     datetime64[ns] 2002-07-04
    lon      (points) float64 65.04 70.04
    lat      (points) float64 16.04 18.04
  * points   (points) int64 0 1

In [24]:
#ds_daily.chlor_a.sel_points?

In [25]:
ds_7day = ds_daily.resample('7D', dim='time')
ds_7day


Out[25]:
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 757)
Coordinates:
  * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
  * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
  * rgb            (rgb) int64 0 1 2
  * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
  * time           (time) datetime64[ns] 2002-07-04 2002-07-11 2002-07-18 ...
Data variables:
    chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
    palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...

In [26]:
plt.figure(figsize=(8,6))
ds_7day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[26]:
<matplotlib.collections.QuadMesh at 0x112bd9dd8>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [27]:
# check the range for the longitude
print(ds_7day.lon.min(),'\n' ,ds_7day.lat.min())


<xarray.DataArray 'lon' ()>
array(45.04166793823242) 
 <xarray.DataArray 'lat' ()>
array(5.041661739349365)

++++++++++++++++++++++++++++++++++++++++++++++

All GDP Floats

Load the float data

Map a (time, lon, lat) to a value on the cholorphlly value


In [28]:
# in the following we deal with the data from the gdp float
from buyodata import buoydata
import os

In [29]:
# a list of files
fnamesAll = ['./gdp_float/buoydata_1_5000.dat','./gdp_float/buoydata_5001_10000.dat','./gdp_float/buoydata_10001_15000.dat','./gdp_float/buoydata_15001_jun16.dat']

In [30]:
# read them and cancatenate them into one DataFrame
dfAll = pd.concat([buoydata.read_buoy_data(f) for f in fnamesAll])  # around 4~5 minutes

#mask = df.time>='2002-07-04' # we only have data after this data for chlor_a
dfvvAll = dfAll[dfAll.time>='2002-07-04']

sum(dfvvAll.time<'2002-07-04') # recheck whether the time is


Out[30]:
0

In [31]:
# process the data so that the longitude are all >0
print('before processing, the minimum longitude is%f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(), dfvvAll.lon.max()))
mask = dfvvAll.lon<0
dfvvAll.lon[mask] = dfvvAll.loc[mask].lon + 360
print('after processing, the minimum longitude is %f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(),dfvvAll.lon.max()) )

dfvvAll.describe()


before processing, the minimum longitude is0.0000004.3 and maximum is 360.0000004.3
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/ipykernel/__main__.py:4: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/core/generic.py:4695: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._update_inplace(new_data)
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2881: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  exec(code_obj, self.user_global_ns, self.user_ns)
after processing, the minimum longitude is 0.0000004.3 and maximum is 360.0000004.3
Out[31]:
id lat lon temp ve vn spd var_lat var_lon var_tmp
count 2.147732e+07 2.131997e+07 2.131997e+07 1.986179e+07 2.129142e+07 2.129142e+07 2.129142e+07 2.147732e+07 2.147732e+07 2.147732e+07
mean 1.765662e+06 -2.263128e+00 2.124412e+02 1.986121e+01 2.454172e-01 4.708192e-01 2.613427e+01 7.326258e+00 7.326555e+00 7.522298e+01
std 9.452835e+06 3.401115e+01 9.746941e+01 8.339498e+00 2.525050e+01 2.052160e+01 1.939087e+01 8.527853e+01 8.527851e+01 2.637454e+02
min 2.578000e+03 -7.764700e+01 0.000000e+00 -1.685000e+01 -2.916220e+02 -2.601400e+02 0.000000e+00 5.268300e-07 -3.941600e-02 1.001300e-03
25% 4.897500e+04 -3.186000e+01 1.490720e+02 1.437300e+01 -1.411400e+01 -1.044700e+01 1.290300e+01 4.366500e-06 7.512600e-06 1.435700e-03
50% 7.141300e+04 -4.920000e+00 2.153940e+02 2.214400e+01 -5.560000e-01 1.970000e-01 2.176700e+01 8.833600e-06 1.495800e-05 1.691700e-03
75% 1.094330e+05 2.756000e+01 3.064370e+02 2.688900e+01 1.356100e+01 1.109300e+01 3.405900e+01 1.833300e-05 3.627900e-05 2.294200e-03
max 6.399288e+07 8.989900e+01 3.600000e+02 4.595000e+01 4.417070e+02 2.783220e+02 4.421750e+02 1.000000e+03 1.000000e+03 1.000000e+03

In [32]:
# Select only the arabian sea region
arabian_sea = (dfvvAll.lon > 45) & (dfvvAll.lon< 75) & (dfvvAll.lat> 5) & (dfvvAll.lat <28)
# arabian_sea = {'lon': slice(45,75), 'lat': slice(5,28)} # later use this longitude and latitude
floatsAll = dfvvAll.loc[arabian_sea]   # directly use mask
print('dfvvAll.shape is %s, floatsAll.shape is %s' % (dfvvAll.shape, floatsAll.shape) )


dfvvAll.shape is (21477317, 11), floatsAll.shape is (111894, 11)

In [33]:
# avoid run this line repeatedly
# visualize the float around global region
fig, ax  = plt.subplots(figsize=(12,10))
dfvvAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[33]:
<matplotlib.axes._subplots.AxesSubplot at 0x489be7908>

In [34]:
# pands dataframe cannot do the resamplingn properly
# cause we are really indexing on ['time','id'], pandas.dataframe.resample cannot do this
# TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'
print()




In [35]:
# dump the surface floater data from pandas.dataframe to xarray.dataset
floatsDSAll = xr.Dataset.from_dataframe(floatsAll.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
floatsDSAll


Out[35]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 17499)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-04T06:00:00 ...
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
Data variables:
    lat      (time, id) float64 nan 16.3 14.03 16.4 14.04 nan 20.11 nan ...
    lon      (time, id) float64 nan 66.23 69.48 64.58 69.51 nan 68.55 nan ...
    temp     (time, id) float64 nan nan nan 28.0 28.53 nan 28.93 nan 27.81 ...
    ve       (time, id) float64 nan 8.68 5.978 6.286 4.844 nan 32.9 nan ...
    vn       (time, id) float64 nan -13.18 -18.05 -7.791 -17.47 nan 15.81 ...
    spd      (time, id) float64 nan 15.78 19.02 10.01 18.13 nan 36.51 nan ...
    var_lat  (time, id) float64 nan 0.0002661 5.01e-05 5.018e-05 5.024e-05 ...
    var_lon  (time, id) float64 nan 0.0006854 8.851e-05 9.018e-05 8.968e-05 ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.003733 0.0667 nan 0.001683 ...

In [36]:
# resample on the xarray.dataset onto two-day frequency
floatsDSAll_7D =floatsDSAll.resample('7D', dim='time')
floatsDSAll_7D


Out[36]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 731)
Coordinates:
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-11 2002-07-18 ...
Data variables:
    spd      (time, id) float64 nan 9.116 19.57 18.47 18.71 nan 25.8 nan ...
    var_lat  (time, id) float64 nan 0.001587 6.252e-05 6.66e-05 5.442e-05 ...
    ve       (time, id) float64 nan 7.634 13.54 13.13 12.62 nan 24.31 nan ...
    lon      (time, id) float64 nan 66.49 69.8 64.94 69.81 nan 69.26 nan ...
    lat      (time, id) float64 nan 16.2 13.64 16.2 13.66 nan 20.11 nan 18.7 ...
    vn       (time, id) float64 nan -0.9647 -10.47 -11.1 -9.331 nan -2.7 nan ...
    var_lon  (time, id) float64 nan 0.006079 0.0001193 0.000128 0.0001 nan ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.003622 0.08638 nan ...
    temp     (time, id) float64 nan nan nan 27.82 28.57 nan 28.99 nan 27.66 ...

In [37]:
# transfer it back to pandas.dataframe for plotting
floatsDFAll_7D = floatsDSAll_7D.to_dataframe()
floatsDFAll_7D
floatsDFAll_7D = floatsDFAll_7D.reset_index()
floatsDFAll_7D
# visualize the subsamping of floats around arabian region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_7D.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[37]:
<matplotlib.axes._subplots.AxesSubplot at 0x11e855860>

In [38]:
# get the value for the chllorophy for each data entry
floatsDFAll_7Dtimeorder = floatsDFAll_7D.sort_values(['time','id'],ascending=True)
floatsDFAll_7Dtimeorder # check whether it is time ordered!!
# should we drop nan to speed up??


Out[38]:
id time spd var_lat ve lon lat vn var_lon var_tmp temp
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
731 10206 2002-07-04 9.116143 0.001587 7.633679 66.486143 16.199036 -0.964714 0.006079 1000.000000 NaN
1462 10208 2002-07-04 19.568179 0.000063 13.538179 69.797393 13.639571 -10.466714 0.000119 1000.000000 NaN
2193 11089 2002-07-04 18.467286 0.000067 13.125536 64.944321 16.201536 -11.098214 0.000128 0.003622 27.824321
2924 15703 2002-07-04 18.709607 0.000054 12.621429 69.811536 13.664357 -9.331036 0.000100 0.086380 28.566893
3655 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4386 27069 2002-07-04 25.798821 0.000053 24.312500 69.255893 20.107393 -2.699643 0.000098 0.001709 28.985429
5117 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5848 28842 2002-07-04 17.977607 0.000093 3.972357 60.814786 18.699071 -6.595714 0.000191 0.003340 27.664714
6579 34159 2002-07-04 34.312536 0.000057 31.120250 59.465607 12.735786 12.632857 0.000106 1000.000000 NaN
7310 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8041 34210 2002-07-04 23.652929 0.000067 -4.493786 56.740607 6.139929 -12.919036 0.000133 0.003693 26.666500
8772 34211 2002-07-04 27.875143 0.000056 22.426857 68.382250 8.319500 -14.216000 0.000103 0.003483 28.365179
9503 34212 2002-07-04 45.650536 0.000056 40.174036 65.563929 6.609179 15.416786 0.000104 0.003568 28.568643
10234 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10965 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
11696 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
12427 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
13158 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
13889 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
14620 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
15351 34708 2002-07-04 35.758821 0.000052 35.386786 60.444357 10.212750 1.909321 0.000095 0.001803 27.222107
16082 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
16813 34710 2002-07-04 45.884500 0.000053 9.640107 50.248679 13.213071 1.348857 0.000102 0.001863 31.119429
17544 34714 2002-07-04 39.069893 0.000060 37.898500 64.408214 13.734893 4.796821 0.000115 0.001812 27.732107
18275 34716 2002-07-04 34.254786 0.000059 32.405357 66.047750 7.661964 8.016571 0.000109 0.001764 28.795321
19006 34718 2002-07-04 36.438321 0.000057 20.501357 72.805143 15.730036 -29.651821 0.000108 0.001697 29.113821
19737 34719 2002-07-04 28.049250 0.000058 14.905679 71.282036 17.422571 -20.532143 0.000109 0.001665 28.957786
20468 34720 2002-07-04 27.975464 0.000061 11.404786 69.387107 14.255964 -23.544607 0.000114 0.001785 28.667893
21199 34721 2002-07-04 12.971000 0.000063 6.588571 65.513893 17.012393 -9.760893 0.000119 0.001765 27.912107
... ... ... ... ... ... ... ... ... ... ... ...
168129 3098682 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
168860 60073460 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
169591 60074440 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
170322 60077450 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
171053 60150420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
171784 60454500 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
172515 60656200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
173246 60657200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
173977 60658190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
174708 60659110 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
175439 60659120 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
176170 60659190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
176901 60659200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
177632 60940960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
178363 60940970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
179094 60941960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
179825 60941970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
180556 60942960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
181287 60942970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
182018 60943960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
182749 60943970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
183480 60944960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
184211 60944970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
184942 60945970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
185673 60946960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
186404 60947960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
187135 60947970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
187866 60948960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
188597 60950430 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
189328 62321420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN

189329 rows × 11 columns


In [40]:
floatsDFAll_7Dtimeorder.lon.dropna().shape  # the longitude data has lots of values (4362,)


Out[40]:
(4362,)

In [41]:
# a little test for the api in loops for the dataframe   
# check df.itertuples? it is faster and preserves the data format
'''
chl_ocx=[]
for row in floats_timeorder.itertuples():
    #print(row)
    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )
    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation
    chl_ocx.append(tmp)
floats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)
chl_ocx[0].to_series
'''


Out[41]:
"\nchl_ocx=[]\nfor row in floats_timeorder.itertuples():\n    #print(row)\n    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )\n    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation\n    chl_ocx.append(tmp)\nfloats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)\nchl_ocx[0].to_series\n"

In [42]:
# this one line avoid the list above
# it took a really long time for 2D interpolation, it takes an hour
tmpAll = ds_7day.chlor_a.sel_points(time=list(floatsDFAll_7Dtimeorder.time),lon=list(floatsDFAll_7Dtimeorder.lon), lat=list(floatsDFAll_7Dtimeorder.lat), method='nearest')
print('the count of nan vaues in tmpAll is',tmpAll.to_series().isnull().sum())


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less
  indexer = np.where(op(left_distances, right_distances) |
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less_equal
  indexer = np.where(op(left_distances, right_distances) |
the count of nan vaues in tmpAll is 187471

In [43]:
#print(tmpAll.dropna().shape)
tmpAll.to_series().dropna().shape  # (1858,) good values


Out[43]:
(1858,)

In [45]:
# tmp.to_series() to transfer it from xarray dataset to series
floatsDFAll_7Dtimeorder['chlor_a'] = pd.Series(np.array(tmpAll.to_series()), index=floatsDFAll_7Dtimeorder.index)
print("after editing the dataframe the nan values in 'chlor_a' is", floatsDFAll_7Dtimeorder.chlor_a.isnull().sum() )  # they should be the same values as above

# take a look at the data
floatsDFAll_7Dtimeorder

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_7Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a', cmap='RdBu_r', edgecolor='none', ax=ax)

def scale(x):
    logged = np.log10(x)
    return logged

#print(floatsAll_timeorder['chlor_a'].apply(scale))
floatsDFAll_7Dtimeorder['chlor_a_log10'] = floatsDFAll_7Dtimeorder['chlor_a'].apply(scale)
floatsDFAll_7Dtimeorder
#print("after the transformation the nan values in 'chlor_a_log10' is", floatsAll_timeorder.chlor_a_log10.isnull().sum() )

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_7Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
#floatsDFAll_7Dtimeorder.chlor_a.dropna().shape  # (1858,)
floatsDFAll_7Dtimeorder.chlor_a_log10.dropna().shape  # (1858,)


after editing the dataframe the nan values in 'chlor_a' is 187471
Out[45]:
(1858,)

In [46]:
# take the diff of the chlor_a, and this has to be done in xarray
# transfer the dataframe into xarry dataset again
# take the difference
floatsDFAll_7Dtimeorder


Out[46]:
id time spd var_lat ve lon lat vn var_lon var_tmp temp chlor_a chlor_a_log10
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
731 10206 2002-07-04 9.116143 0.001587 7.633679 66.486143 16.199036 -0.964714 0.006079 1000.000000 NaN NaN NaN
1462 10208 2002-07-04 19.568179 0.000063 13.538179 69.797393 13.639571 -10.466714 0.000119 1000.000000 NaN NaN NaN
2193 11089 2002-07-04 18.467286 0.000067 13.125536 64.944321 16.201536 -11.098214 0.000128 0.003622 27.824321 NaN NaN
2924 15703 2002-07-04 18.709607 0.000054 12.621429 69.811536 13.664357 -9.331036 0.000100 0.086380 28.566893 NaN NaN
3655 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4386 27069 2002-07-04 25.798821 0.000053 24.312500 69.255893 20.107393 -2.699643 0.000098 0.001709 28.985429 NaN NaN
5117 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5848 28842 2002-07-04 17.977607 0.000093 3.972357 60.814786 18.699071 -6.595714 0.000191 0.003340 27.664714 NaN NaN
6579 34159 2002-07-04 34.312536 0.000057 31.120250 59.465607 12.735786 12.632857 0.000106 1000.000000 NaN NaN NaN
7310 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
8041 34210 2002-07-04 23.652929 0.000067 -4.493786 56.740607 6.139929 -12.919036 0.000133 0.003693 26.666500 NaN NaN
8772 34211 2002-07-04 27.875143 0.000056 22.426857 68.382250 8.319500 -14.216000 0.000103 0.003483 28.365179 0.105164 -0.978133
9503 34212 2002-07-04 45.650536 0.000056 40.174036 65.563929 6.609179 15.416786 0.000104 0.003568 28.568643 NaN NaN
10234 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
10965 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
11696 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
12427 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
13158 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
13889 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
14620 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
15351 34708 2002-07-04 35.758821 0.000052 35.386786 60.444357 10.212750 1.909321 0.000095 0.001803 27.222107 NaN NaN
16082 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
16813 34710 2002-07-04 45.884500 0.000053 9.640107 50.248679 13.213071 1.348857 0.000102 0.001863 31.119429 NaN NaN
17544 34714 2002-07-04 39.069893 0.000060 37.898500 64.408214 13.734893 4.796821 0.000115 0.001812 27.732107 NaN NaN
18275 34716 2002-07-04 34.254786 0.000059 32.405357 66.047750 7.661964 8.016571 0.000109 0.001764 28.795321 0.110992 -0.954708
19006 34718 2002-07-04 36.438321 0.000057 20.501357 72.805143 15.730036 -29.651821 0.000108 0.001697 29.113821 NaN NaN
19737 34719 2002-07-04 28.049250 0.000058 14.905679 71.282036 17.422571 -20.532143 0.000109 0.001665 28.957786 NaN NaN
20468 34720 2002-07-04 27.975464 0.000061 11.404786 69.387107 14.255964 -23.544607 0.000114 0.001785 28.667893 NaN NaN
21199 34721 2002-07-04 12.971000 0.000063 6.588571 65.513893 17.012393 -9.760893 0.000119 0.001765 27.912107 NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ...
168129 3098682 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
168860 60073460 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
169591 60074440 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
170322 60077450 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
171053 60150420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
171784 60454500 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
172515 60656200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
173246 60657200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
173977 60658190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
174708 60659110 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
175439 60659120 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
176170 60659190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
176901 60659200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
177632 60940960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
178363 60940970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
179094 60941960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
179825 60941970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
180556 60942960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
181287 60942970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
182018 60943960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
182749 60943970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
183480 60944960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
184211 60944970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
184942 60945970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
185673 60946960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
186404 60947960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
187135 60947970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
187866 60948960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
188597 60950430 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
189328 62321420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

189329 rows × 13 columns


In [47]:
# unstack() will provide a 2d dataframe
# reset_index() will reset all the index as columns

In [49]:
# prepare the data in dataset and about to take the diff
tmp = xr.Dataset.from_dataframe(floatsDFAll_7Dtimeorder.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
# take the diff on the chlor_a
chlor_a_rate = tmp.diff(dim='time',n=1).chlor_a.to_series().reset_index()
# make the column to a proper name
chlor_a_rate.rename(columns={'chlor_a':'chl_rate'}, inplace='True')
chlor_a_rate


# merge the two dataframes {floatsDFAll_XDtimeorder; chlor_a_rate} into one dataframe based on the index {id, time} and use the left method
floatsDFAllRate_7Dtimeorder=pd.merge(floatsDFAll_7Dtimeorder,chlor_a_rate, on=['time','id'], how = 'left')
floatsDFAllRate_7Dtimeorder

# check 
print('check the sum of the chlor_a before the merge', chlor_a_rate.chl_rate.sum())
print('check the sum of the chlor_a after the merge',floatsDFAllRate_7Dtimeorder.chl_rate.sum())


# visualize the chlorophyll rate, it is *better* to visualize at this scale
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_7Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.8, vmax=0.8, edgecolor='none', ax=ax)

# visualize the chlorophyll rate on the log scale
floatsDFAllRate_7Dtimeorder['chl_rate_log10'] = floatsDFAllRate_7Dtimeorder['chl_rate'].apply(scale)
floatsDFAllRate_7Dtimeorder
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_7Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
floatsDFAllRate_7Dtimeorder.chl_rate.dropna().shape   # (1127,) data points
#floatsDFAllRate_7Dtimeorder.chl_rate_log10.dropna().shape   # (466,) data points..... notice, chl_rate can be negative, so do not take log10


check the sum of the chlor_a before the merge -68.59935079887515
check the sum of the chlor_a after the merge -68.59935079887515
Out[49]:
(1127,)

In [50]:
pd.to_datetime(floatsDFAllRate_7Dtimeorder.time)
type(pd.to_datetime(floatsDFAllRate_7Dtimeorder.time))
ts = pd.Series(0, index=pd.to_datetime(floatsDFAllRate_7Dtimeorder.time) ) # creat a target time series for masking purpose

# take the month out
month = ts.index.month 
# month.shape # a check on the shape of the month.
selector = ((11==month) | (12==month) | (1==month) | (2==month) | (3==month) )  
selector
print('shape of the selector', selector.shape)

print('all the data count in [11-01, 03-31]  is', floatsDFAllRate_7Dtimeorder[selector].chl_rate.dropna().shape) # total (723,)
print('all the data count is', floatsDFAllRate_7Dtimeorder.chl_rate.dropna().shape )   # total (1127,)


shape of the selector (189329,)
all the data count in [11-01, 03-31]  is (723,)
all the data count is (1127,)

In [51]:
# histogram for non standarized data
axfloat = floatsDFAllRate_7Dtimeorder[selector].chl_rate.dropna().hist(bins=100,range=[-0.3,0.3])
axfloat.set_title('7-Day chl_rate')


Out[51]:
<matplotlib.text.Text at 0x12b035898>

In [52]:
# standarized series
ts = floatsDFAllRate_7Dtimeorder[selector].chl_rate.dropna()
ts_standardized = (ts - ts.mean())/ts.std()
axts = ts_standardized.hist(bins=100,range=[-0.3,0.3])
axts.set_title('7-Day standardized chl_rate')


Out[52]:
<matplotlib.text.Text at 0x167124be0>

In [53]:
# all the data
fig, axes = plt.subplots(nrows=8, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2017), axes.flat) :
    tmpyear = floatsDFAllRate_7Dtimeorder[ (floatsDFAllRate_7Dtimeorder.time > str(i))  & (floatsDFAllRate_7Dtimeorder.time < str(i+1)) ] # if year i
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)   # total is 1121
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r',vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)     
    
# remove the extra figure
ax = plt.subplot(8,2,16)
fig.delaxes(ax)


(50,)
(48,)
(4,)
(42,)
(98,)
(96,)
(143,)
(45,)
(79,)
(20,)
(38,)
(39,)
(240,)
(128,)
(51,)

In [54]:
fig, axes = plt.subplots(nrows=7, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2016), axes.flat) :
    tmpyear = floatsDFAllRate_7Dtimeorder[ (floatsDFAllRate_7Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_7Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)  # the total is 723
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)


(63,)
(0,)
(6,)
(72,)
(40,)
(122,)
(28,)
(58,)
(6,)
(44,)
(0,)
(118,)
(110,)
(56,)

In [55]:
# let's output the data as a csv or hdf file to disk to save the experiment time

df_list = []
for i in range(2002,2017) :
    tmpyear = floatsDFAllRate_7Dtimeorder[ (floatsDFAllRate_7Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_7Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    df_list.append(tmpyear)
    
df_tmp = pd.concat(df_list)
print('all the data count in [11-01, 03-31]  is ', df_tmp.chl_rate.dropna().shape) # again, the total is   (723,)
df_chl_out_7D_modisa = df_tmp[~df_tmp.chl_rate.isnull()] # only keep the non-nan values
#list(df_chl_out_XD.groupby(['id']))   # can see the continuity pattern of the Lagarangian difference for each float id

# output to a csv or hdf file
df_chl_out_7D_modisa.head()


all the data count in [11-01, 03-31]  is  (723,)
Out[55]:
id time spd var_lat ve lon lat vn var_lon var_tmp temp chlor_a chlor_a_log10 chl_rate chl_rate_log10
4663 10206 2002-11-07 5.881464 0.000487 -2.351607 67.145571 11.112429 3.113143 0.001486 1000.000000 NaN 0.130267 -0.885166 -0.004264 NaN
4665 11089 2002-11-07 17.183500 0.000067 -16.224571 64.522214 14.321929 -1.954857 0.000133 0.003821 28.931286 0.192224 -0.716192 0.067516 -1.170591
4667 15707 2002-11-07 25.486857 0.000077 -9.886893 67.237571 13.279821 -21.813714 0.000155 1000.000000 NaN 0.164760 -0.783149 0.009444 -2.024855
4685 34710 2002-11-07 16.909357 0.000073 -4.254286 63.074536 17.550536 15.411857 0.000146 0.001906 28.607679 0.392885 -0.405735 0.016794 -1.774846
4691 34721 2002-11-07 16.744036 0.000066 9.964393 68.010643 12.662179 6.091821 0.000130 0.001844 29.422214 0.141941 -0.847893 -0.001058 NaN

In [56]:
df_chl_out_7D_modisa.index.name = 'index'  # make it specific for the index name

# CSV CSV CSV CSV with specfic index
df_chl_out_7D_modisa.to_csv('df_chl_out_7D_modisa.csv', sep=',', index_label = 'index')

# load CSV output
test = pd.read_csv('df_chl_out_7D_modisa.csv', index_col='index')
test.head()


Out[56]:
id time spd var_lat ve lon lat vn var_lon var_tmp temp chlor_a chlor_a_log10 chl_rate chl_rate_log10
index
4663 10206 2002-11-07 5.881464 0.000487 -2.351607 67.145571 11.112429 3.113143 0.001486 1000.000000 NaN 0.130267 -0.885166 -0.004264 NaN
4665 11089 2002-11-07 17.183500 0.000067 -16.224571 64.522214 14.321929 -1.954857 0.000133 0.003821 28.931286 0.192224 -0.716192 0.067516 -1.170591
4667 15707 2002-11-07 25.486857 0.000077 -9.886893 67.237571 13.279821 -21.813714 0.000155 1000.000000 NaN 0.164760 -0.783149 0.009444 -2.024855
4685 34710 2002-11-07 16.909357 0.000073 -4.254286 63.074536 17.550536 15.411857 0.000146 0.001906 28.607679 0.392885 -0.405735 0.016794 -1.774846
4691 34721 2002-11-07 16.744036 0.000066 9.964393 68.010643 12.662179 6.091821 0.000130 0.001844 29.422214 0.141941 -0.847893 -0.001058 NaN

In [ ]: