6Day subsampling on the OceanColor Dataset


In [8]:
import xarray as xr
import numpy as np
import pandas as pd
%matplotlib inline
from matplotlib import pyplot as plt
from dask.diagnostics import ProgressBar
import seaborn as sns
from matplotlib.colors import LogNorm

Load data from disk

We already downloaded a subsetted MODIS-Aqua chlorophyll-a dataset for the Arabian Sea.

We can read all the netcdf files into one xarray Dataset using the open_mfsdataset function. Note that this does not load the data into memory yet. That only happens when we try to access the values.


In [9]:
ds_8day = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_8D.nc')
ds_daily = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_D.nc')
both_datasets = [ds_8day, ds_daily]

How much data is contained here? Let's get the answer in MB.


In [10]:
print([(ds.nbytes / 1e6) for ds in both_datasets])


[534.295504, 4241.4716]

The 8-day dataset is ~534 MB while the daily dataset is 4.2 GB. These both easily fit in RAM. So let's load them all into memory


In [11]:
[ds.load() for ds in both_datasets]


Out[11]:
[<xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 667)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...,
 <xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 5295)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...]

Fix bad data

In preparing this demo, I noticed that small number of maps had bad data--specifically, they contained large negative values of chlorophyll concentration. Looking closer, I realized that the land/cloud mask had been inverted. So I wrote a function to invert it back and correct the data.


In [12]:
def fix_bad_data(ds):
    # for some reason, the cloud / land mask is backwards on some data
    # this is obvious because there are chlorophyl values less than zero
    bad_data = ds.chlor_a.groupby('time').min() < 0
    # loop through and fix
    for n in np.nonzero(bad_data.values)[0]:
        data = ds.chlor_a[n].values 
        ds.chlor_a.values[n] = np.ma.masked_less(data, 0).filled(np.nan)

In [13]:
[fix_bad_data(ds) for ds in both_datasets]


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in less
  if not reflexive
Out[13]:
[None, None]

In [14]:
ds_8day.chlor_a>0


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[14]:
<xarray.DataArray 'chlor_a' (time: 667, lat: 276, lon: 360)>
array([[[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ...,  True, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False,  True],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False,  True,  True]],

       ..., 
       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]]], dtype=bool)
Coordinates:
  * lat      (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 27.37 ...
  * lon      (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 45.63 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...

Count the number of ocean data points

First we have to figure out the land mask. Unfortunately it doesn't come with the dataset. But we can infer it by counting all the points that have at least one non-nan chlorophyll value.


In [15]:
(ds_8day.chlor_a>0).sum(dim='time').plot()


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[15]:
<matplotlib.collections.QuadMesh at 0x1193b2f60>

In [16]:
#  find a mask for the land
ocean_mask = (ds_8day.chlor_a>0).sum(dim='time')>0
#ocean_mask = (ds_daily.chlor_a>0).sum(dim='time')>0
num_ocean_points = ocean_mask.sum().values  # compute the total nonzeros regions(data point)
ocean_mask.plot()
plt.title('%g total ocean points' % num_ocean_points)


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[16]:
<matplotlib.text.Text at 0x13d4725c0>

In [17]:
#ds_8day

In [18]:
#ds_daily

In [19]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time='2002-11-18',method='nearest').plot(norm=LogNorm())
#ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[19]:
<matplotlib.collections.QuadMesh at 0x11c1835c0>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [20]:
#list(ds_daily.groupby('time')) # take a look at what's inside

Now we count up the number of valid points in each snapshot and divide by the total number of ocean points.


In [21]:
'''
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 144, lon: 276, rgb: 3, time: 4748)
'''
ds_daily.groupby('time').count() # information from original data


Out[21]:
<xarray.Dataset>
Dimensions:  (time: 5295)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
Data variables:
    chlor_a  (time) int64 658 1170 1532 2798 2632 1100 1321 636 2711 1163 ...
    palette  (time) int64 768 768 768 768 768 768 768 768 768 768 768 768 ...

In [22]:
ds_daily.chlor_a.groupby('time').count()/float(num_ocean_points)


Out[22]:
<xarray.DataArray 'chlor_a' (time: 5295)>
array([ 0.01053255,  0.01872809,  0.02452259, ...,  0.        ,
        0.        ,  0.        ])
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...

In [23]:
count_8day,count_daily = [ds.chlor_a.groupby('time').count()/float(num_ocean_points)
                            for ds in (ds_8day,ds_daily)]

In [24]:
#count_8day = ds_8day.chl_ocx.groupby('time').count()/float(num_ocean_points)
#coundt_daily = ds_daily.chl_ocx.groupby('time').count()/float(num_ocean_points)

#count_8day, coundt_daily = [ds.chl_ocx.groupby('time').count()/float(num_ocean_points)
#                            for ds in ds_8day, ds_daily] # not work in python 3

In [25]:
plt.figure(figsize=(12,4))
count_8day.plot(color='k')
count_daily.plot(color='r')

plt.legend(['8 day','daily'])


Out[25]:
<matplotlib.legend.Legend at 0x11dc45080>

Seasonal Climatology


In [26]:
count_8day_clim, coundt_daily_clim = [count.groupby('time.month').mean()  # monthly data
                                      for count in (count_8day, count_daily)]

In [27]:
# mean value of the monthly data on the count of nonzeros
plt.figure(figsize=(12,4))
count_8day_clim.plot(color='k')
coundt_daily_clim.plot(color='r')
plt.legend(['8 day', 'daily'])


Out[27]:
<matplotlib.legend.Legend at 0x11de45b70>

From the above figure, we see that data coverage is highest in the winter (especially Feburary) and lowest in summer.

Maps of individual days

Let's grab some data from Febrauary and plot it.


In [28]:
target_date = '2003-02-15'
plt.figure(figsize=(8,6))
ds_8day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[28]:
<matplotlib.collections.QuadMesh at 0x11de527b8>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [29]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[29]:
<matplotlib.collections.QuadMesh at 0x12b5cf940>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [30]:
ds_daily.chlor_a[0].sel_points(lon=[65, 70], lat=[16, 18], method='nearest')   # the time is selected!
#ds_daily.chl_ocx[0].sel_points(time= times, lon=lons, lat=times, method='nearest')


Out[30]:
<xarray.DataArray 'chlor_a' (points: 2)>
array([ nan,  nan])
Coordinates:
    time     datetime64[ns] 2002-07-04
    lon      (points) float64 65.04 70.04
    lat      (points) float64 16.04 18.04
  * points   (points) int64 0 1

In [31]:
#ds_daily.chlor_a.sel_points?

In [32]:
ds_6day = ds_daily.resample('6D', dim='time')
ds_6day


Out[32]:
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 883)
Coordinates:
  * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
  * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
  * rgb            (rgb) int64 0 1 2
  * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
  * time           (time) datetime64[ns] 2002-07-04 2002-07-10 2002-07-16 ...
Data variables:
    chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
    palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...

In [33]:
plt.figure(figsize=(8,6))
ds_6day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[33]:
<matplotlib.collections.QuadMesh at 0x11ad4e630>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [34]:
# check the range for the longitude
print(ds_6day.lon.min(),'\n' ,ds_6day.lat.min())


<xarray.DataArray 'lon' ()>
array(45.04166793823242) 
 <xarray.DataArray 'lat' ()>
array(5.041661739349365)

++++++++++++++++++++++++++++++++++++++++++++++

All GDP Floats

Load the float data

Map a (time, lon, lat) to a value on the cholorphlly value


In [35]:
# in the following we deal with the data from the gdp float
from buyodata import buoydata
import os

In [36]:
# a list of files
fnamesAll = ['./gdp_float/buoydata_1_5000.dat','./gdp_float/buoydata_5001_10000.dat','./gdp_float/buoydata_10001_15000.dat','./gdp_float/buoydata_15001_jun16.dat']

In [37]:
# read them and cancatenate them into one DataFrame
dfAll = pd.concat([buoydata.read_buoy_data(f) for f in fnamesAll])  # around 4~5 minutes

#mask = df.time>='2002-07-04' # we only have data after this data for chlor_a
dfvvAll = dfAll[dfAll.time>='2002-07-04']

sum(dfvvAll.time<'2002-07-04') # recheck whether the time is


Out[37]:
0

In [38]:
# process the data so that the longitude are all >0
print('before processing, the minimum longitude is%f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(), dfvvAll.lon.max()))
mask = dfvvAll.lon<0
dfvvAll.lon[mask] = dfvvAll.loc[mask].lon + 360
print('after processing, the minimum longitude is %f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(),dfvvAll.lon.max()) )

dfvvAll.describe()


before processing, the minimum longitude is0.0000004.3 and maximum is 360.0000004.3
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/ipykernel/__main__.py:4: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/core/generic.py:4695: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._update_inplace(new_data)
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2881: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  exec(code_obj, self.user_global_ns, self.user_ns)
after processing, the minimum longitude is 0.0000004.3 and maximum is 360.0000004.3
Out[38]:
id lat lon temp ve vn spd var_lat var_lon var_tmp
count 2.147732e+07 2.131997e+07 2.131997e+07 1.986179e+07 2.129142e+07 2.129142e+07 2.129142e+07 2.147732e+07 2.147732e+07 2.147732e+07
mean 1.765662e+06 -2.263128e+00 2.124412e+02 1.986121e+01 2.454172e-01 4.708192e-01 2.613427e+01 7.326258e+00 7.326555e+00 7.522298e+01
std 9.452835e+06 3.401115e+01 9.746941e+01 8.339498e+00 2.525050e+01 2.052160e+01 1.939087e+01 8.527853e+01 8.527851e+01 2.637454e+02
min 2.578000e+03 -7.764700e+01 0.000000e+00 -1.685000e+01 -2.916220e+02 -2.601400e+02 0.000000e+00 5.268300e-07 -3.941600e-02 1.001300e-03
25% 4.897500e+04 -3.186000e+01 1.490720e+02 1.437300e+01 -1.411400e+01 -1.044700e+01 1.290300e+01 4.366500e-06 7.512600e-06 1.435700e-03
50% 7.141300e+04 -4.920000e+00 2.153940e+02 2.214400e+01 -5.560000e-01 1.970000e-01 2.176700e+01 8.833600e-06 1.495800e-05 1.691700e-03
75% 1.094330e+05 2.756000e+01 3.064370e+02 2.688900e+01 1.356100e+01 1.109300e+01 3.405900e+01 1.833300e-05 3.627900e-05 2.294200e-03
max 6.399288e+07 8.989900e+01 3.600000e+02 4.595000e+01 4.417070e+02 2.783220e+02 4.421750e+02 1.000000e+03 1.000000e+03 1.000000e+03

In [39]:
# Select only the arabian sea region
arabian_sea = (dfvvAll.lon > 45) & (dfvvAll.lon< 75) & (dfvvAll.lat> 5) & (dfvvAll.lat <28)
# arabian_sea = {'lon': slice(45,75), 'lat': slice(5,28)} # later use this longitude and latitude
floatsAll = dfvvAll.loc[arabian_sea]   # directly use mask
print('dfvvAll.shape is %s, floatsAll.shape is %s' % (dfvvAll.shape, floatsAll.shape) )


dfvvAll.shape is (21477317, 11), floatsAll.shape is (111894, 11)

In [40]:
# avoid run this line repeatedly
# visualize the float around global region
fig, ax  = plt.subplots(figsize=(12,10))
dfvvAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[40]:
<matplotlib.axes._subplots.AxesSubplot at 0x11ad5ac18>

In [41]:
# pands dataframe cannot do the resamplingn properly
# cause we are really indexing on ['time','id'], pandas.dataframe.resample cannot do this
# TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'
print()




In [42]:
# dump the surface floater data from pandas.dataframe to xarray.dataset
floatsDSAll = xr.Dataset.from_dataframe(floatsAll.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
floatsDSAll


Out[42]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 17499)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-04T06:00:00 ...
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
Data variables:
    lat      (time, id) float64 nan 16.3 14.03 16.4 14.04 nan 20.11 nan ...
    lon      (time, id) float64 nan 66.23 69.48 64.58 69.51 nan 68.55 nan ...
    temp     (time, id) float64 nan nan nan 28.0 28.53 nan 28.93 nan 27.81 ...
    ve       (time, id) float64 nan 8.68 5.978 6.286 4.844 nan 32.9 nan ...
    vn       (time, id) float64 nan -13.18 -18.05 -7.791 -17.47 nan 15.81 ...
    spd      (time, id) float64 nan 15.78 19.02 10.01 18.13 nan 36.51 nan ...
    var_lat  (time, id) float64 nan 0.0002661 5.01e-05 5.018e-05 5.024e-05 ...
    var_lon  (time, id) float64 nan 0.0006854 8.851e-05 9.018e-05 8.968e-05 ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.003733 0.0667 nan 0.001683 ...

In [43]:
# resample on the xarray.dataset onto two-day frequency
floatsDSAll_6D =floatsDSAll.resample('6D', dim='time')
floatsDSAll_6D


Out[43]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 852)
Coordinates:
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-10 2002-07-16 ...
Data variables:
    lon      (time, id) float64 nan 66.46 69.74 64.89 69.76 nan 69.16 nan ...
    var_lon  (time, id) float64 nan 0.006882 0.0001209 0.000122 0.0001014 ...
    vn       (time, id) float64 nan -1.914 -12.39 -8.704 -11.62 nan -2.414 ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.003651 0.08467 nan ...
    spd      (time, id) float64 nan 9.289 19.63 16.81 18.83 nan 26.07 nan ...
    var_lat  (time, id) float64 nan 0.001782 6.312e-05 6.401e-05 5.511e-05 ...
    temp     (time, id) float64 nan nan nan 27.84 28.56 nan 28.96 nan 27.67 ...
    lat      (time, id) float64 nan 16.19 13.67 16.25 13.68 nan 20.13 nan ...
    ve       (time, id) float64 nan 7.821 12.69 13.33 11.92 nan 24.46 nan ...

In [44]:
# transfer it back to pandas.dataframe for plotting
floatsDFAll_6D = floatsDSAll_6D.to_dataframe()
floatsDFAll_6D
floatsDFAll_6D = floatsDFAll_6D.reset_index()
floatsDFAll_6D
# visualize the subsamping of floats around arabian region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_6D.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[44]:
<matplotlib.axes._subplots.AxesSubplot at 0x11b8cd9b0>

In [45]:
# get the value for the chllorophy for each data entry
floatsDFAll_6Dtimeorder = floatsDFAll_6D.sort_values(['time','id'],ascending=True)
floatsDFAll_6Dtimeorder # check whether it is time ordered!!
# should we drop nan to speed up??


Out[45]:
id time lon var_lon vn var_tmp spd var_lat temp lat ve
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
852 10206 2002-07-04 66.462208 0.006882 -1.913917 1000.000000 9.288542 0.001782 NaN 16.192375 7.820625
1704 10208 2002-07-04 69.737208 0.000121 -12.390125 1000.000000 19.627375 0.000063 NaN 13.665042 12.693750
2556 11089 2002-07-04 64.888250 0.000122 -8.703625 0.003651 16.807458 0.000064 27.842458 16.248958 13.326750
3408 15703 2002-07-04 69.756625 0.000101 -11.618875 0.084672 18.828333 0.000055 28.563958 13.684875 11.921125
4260 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5112 27069 2002-07-04 69.159542 0.000099 -2.413708 0.001707 26.066417 0.000054 28.963625 20.131083 24.459167
5964 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6816 28842 2002-07-04 60.810958 0.000188 -6.515792 0.003334 18.883542 0.000092 27.665333 18.734417 5.594167
7668 34159 2002-07-04 59.335292 0.000109 9.713042 1000.000000 31.484542 0.000058 NaN 12.677917 29.419333
8520 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9372 34210 2002-07-04 56.760500 0.000141 -15.606167 0.003675 21.520333 0.000070 26.712458 6.184083 -11.194333
10224 34211 2002-07-04 68.285625 0.000105 -13.066833 0.003488 28.371292 0.000057 28.361250 8.374333 23.969000
11076 34212 2002-07-04 65.375750 0.000093 17.648625 0.003588 46.028333 0.000051 28.545250 6.542208 39.663333
11928 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
12780 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
13632 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
14484 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
15336 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
16188 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
17040 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
17892 34708 2002-07-04 60.315542 0.000096 1.757542 0.001768 38.500708 0.000052 27.184000 10.209708 38.111667
18744 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
19596 34710 2002-07-04 50.145667 0.000103 8.075625 0.001875 46.875167 0.000053 31.104542 13.245708 12.005167
20448 34714 2002-07-04 64.254667 0.000106 6.745875 0.001818 39.295750 0.000057 27.731167 13.726333 38.046958
21300 34716 2002-07-04 65.924917 0.000099 8.357917 0.001769 37.732375 0.000054 28.801500 7.618917 35.828000
22152 34718 2002-07-04 72.723917 0.000110 -28.297708 0.001692 35.052875 0.000058 29.128917 15.847625 19.968458
23004 34719 2002-07-04 71.230250 0.000112 -17.508583 0.001647 26.124958 0.000059 28.950125 17.522292 16.102833
23856 34720 2002-07-04 69.340333 0.000116 -26.427208 0.001813 29.710708 0.000062 28.669875 14.327542 10.629958
24708 34721 2002-07-04 65.490667 0.000111 -9.380792 0.001788 12.911625 0.000059 27.910875 17.049667 7.087000
... ... ... ... ... ... ... ... ... ... ... ...
195959 3098682 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
196811 60073460 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
197663 60074440 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
198515 60077450 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
199367 60150420 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
200219 60454500 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
201071 60656200 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
201923 60657200 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
202775 60658190 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
203627 60659110 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
204479 60659120 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
205331 60659190 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
206183 60659200 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
207035 60940960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
207887 60940970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
208739 60941960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
209591 60941970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
210443 60942960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
211295 60942970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
212147 60943960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
212999 60943970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
213851 60944960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
214703 60944970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
215555 60945970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
216407 60946960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
217259 60947960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
218111 60947970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
218963 60948960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
219815 60950430 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN
220667 62321420 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN

220668 rows × 11 columns


In [47]:
floatsDFAll_6Dtimeorder.lon.dropna().shape  # the longitude data has lots of values (5013,)


Out[47]:
(5013,)

In [48]:
# a little test for the api in loops for the dataframe   
# check df.itertuples? it is faster and preserves the data format
'''
chl_ocx=[]
for row in floats_timeorder.itertuples():
    #print(row)
    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )
    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation
    chl_ocx.append(tmp)
floats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)
chl_ocx[0].to_series
'''


Out[48]:
"\nchl_ocx=[]\nfor row in floats_timeorder.itertuples():\n    #print(row)\n    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )\n    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation\n    chl_ocx.append(tmp)\nfloats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)\nchl_ocx[0].to_series\n"

In [49]:
# this one line avoid the list above
# it took a really long time for 2D interpolation, it takes an hour
tmpAll = ds_6day.chlor_a.sel_points(time=list(floatsDFAll_6Dtimeorder.time),lon=list(floatsDFAll_6Dtimeorder.lon), lat=list(floatsDFAll_6Dtimeorder.lat), method='nearest')
print('the count of nan vaues in tmpAll is',tmpAll.to_series().isnull().sum())


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less
  indexer = np.where(op(left_distances, right_distances) |
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less_equal
  indexer = np.where(op(left_distances, right_distances) |
the count of nan vaues in tmpAll is 218748

In [50]:
#print(tmpAll.dropna().shape)
tmpAll.to_series().dropna().shape  # (1920,) good values


Out[50]:
(1920,)

In [52]:
# tmp.to_series() to transfer it from xarray dataset to series
floatsDFAll_6Dtimeorder['chlor_a'] = pd.Series(np.array(tmpAll.to_series()), index=floatsDFAll_6Dtimeorder.index)
print("after editing the dataframe the nan values in 'chlor_a' is", floatsDFAll_6Dtimeorder.chlor_a.isnull().sum() )  # they should be the same values as above

# take a look at the data
floatsDFAll_6Dtimeorder

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_6Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a', cmap='RdBu_r', edgecolor='none', ax=ax)

def scale(x):
    logged = np.log10(x)
    return logged

#print(floatsAll_timeorder['chlor_a'].apply(scale))
floatsDFAll_6Dtimeorder['chlor_a_log10'] = floatsDFAll_6Dtimeorder['chlor_a'].apply(scale)
floatsDFAll_6Dtimeorder
#print("after the transformation the nan values in 'chlor_a_log10' is", floatsAll_timeorder.chlor_a_log10.isnull().sum() )

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_6Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
floatsDFAll_6Dtimeorder.chlor_a.dropna().shape  # (1920,)
#floatsDFAll_6Dtimeorder.chlor_a_log10.dropna().shape  # (1920,)


after editing the dataframe the nan values in 'chlor_a' is 218748
Out[52]:
(1920,)

In [53]:
# take the diff of the chlor_a, and this has to be done in xarray
# transfer the dataframe into xarry dataset again
# take the difference
floatsDFAll_6Dtimeorder


Out[53]:
id time lon var_lon vn var_tmp spd var_lat temp lat ve chlor_a chlor_a_log10
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
852 10206 2002-07-04 66.462208 0.006882 -1.913917 1000.000000 9.288542 0.001782 NaN 16.192375 7.820625 NaN NaN
1704 10208 2002-07-04 69.737208 0.000121 -12.390125 1000.000000 19.627375 0.000063 NaN 13.665042 12.693750 NaN NaN
2556 11089 2002-07-04 64.888250 0.000122 -8.703625 0.003651 16.807458 0.000064 27.842458 16.248958 13.326750 NaN NaN
3408 15703 2002-07-04 69.756625 0.000101 -11.618875 0.084672 18.828333 0.000055 28.563958 13.684875 11.921125 NaN NaN
4260 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5112 27069 2002-07-04 69.159542 0.000099 -2.413708 0.001707 26.066417 0.000054 28.963625 20.131083 24.459167 NaN NaN
5964 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
6816 28842 2002-07-04 60.810958 0.000188 -6.515792 0.003334 18.883542 0.000092 27.665333 18.734417 5.594167 NaN NaN
7668 34159 2002-07-04 59.335292 0.000109 9.713042 1000.000000 31.484542 0.000058 NaN 12.677917 29.419333 NaN NaN
8520 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
9372 34210 2002-07-04 56.760500 0.000141 -15.606167 0.003675 21.520333 0.000070 26.712458 6.184083 -11.194333 NaN NaN
10224 34211 2002-07-04 68.285625 0.000105 -13.066833 0.003488 28.371292 0.000057 28.361250 8.374333 23.969000 NaN NaN
11076 34212 2002-07-04 65.375750 0.000093 17.648625 0.003588 46.028333 0.000051 28.545250 6.542208 39.663333 NaN NaN
11928 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
12780 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
13632 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
14484 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
15336 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
16188 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
17040 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
17892 34708 2002-07-04 60.315542 0.000096 1.757542 0.001768 38.500708 0.000052 27.184000 10.209708 38.111667 NaN NaN
18744 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
19596 34710 2002-07-04 50.145667 0.000103 8.075625 0.001875 46.875167 0.000053 31.104542 13.245708 12.005167 NaN NaN
20448 34714 2002-07-04 64.254667 0.000106 6.745875 0.001818 39.295750 0.000057 27.731167 13.726333 38.046958 NaN NaN
21300 34716 2002-07-04 65.924917 0.000099 8.357917 0.001769 37.732375 0.000054 28.801500 7.618917 35.828000 0.108553 -0.964358
22152 34718 2002-07-04 72.723917 0.000110 -28.297708 0.001692 35.052875 0.000058 29.128917 15.847625 19.968458 NaN NaN
23004 34719 2002-07-04 71.230250 0.000112 -17.508583 0.001647 26.124958 0.000059 28.950125 17.522292 16.102833 NaN NaN
23856 34720 2002-07-04 69.340333 0.000116 -26.427208 0.001813 29.710708 0.000062 28.669875 14.327542 10.629958 NaN NaN
24708 34721 2002-07-04 65.490667 0.000111 -9.380792 0.001788 12.911625 0.000059 27.910875 17.049667 7.087000 NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ...
195959 3098682 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
196811 60073460 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
197663 60074440 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
198515 60077450 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
199367 60150420 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
200219 60454500 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
201071 60656200 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
201923 60657200 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
202775 60658190 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
203627 60659110 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
204479 60659120 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
205331 60659190 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
206183 60659200 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
207035 60940960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
207887 60940970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
208739 60941960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
209591 60941970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
210443 60942960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
211295 60942970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
212147 60943960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
212999 60943970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
213851 60944960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
214703 60944970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
215555 60945970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
216407 60946960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
217259 60947960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
218111 60947970 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
218963 60948960 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
219815 60950430 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
220667 62321420 2016-06-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

220668 rows × 13 columns


In [54]:
# unstack() will provide a 2d dataframe
# reset_index() will reset all the index as columns

In [56]:
# prepare the data in dataset and about to take the diff
tmp = xr.Dataset.from_dataframe(floatsDFAll_6Dtimeorder.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
# take the diff on the chlor_a
chlor_a_rate = tmp.diff(dim='time',n=1).chlor_a.to_series().reset_index()
# make the column to a proper name
chlor_a_rate.rename(columns={'chlor_a':'chl_rate'}, inplace='True')
chlor_a_rate


# merge the two dataframes {floatsDFAll_XDtimeorder; chlor_a_rate} into one dataframe based on the index {id, time} and use the left method
floatsDFAllRate_6Dtimeorder=pd.merge(floatsDFAll_6Dtimeorder,chlor_a_rate, on=['time','id'], how = 'left')
floatsDFAllRate_6Dtimeorder

# check 
print('check the sum of the chlor_a before the merge', chlor_a_rate.chl_rate.sum())
print('check the sum of the chlor_a after the merge',floatsDFAllRate_6Dtimeorder.chl_rate.sum())


# visualize the chlorophyll rate, it is *better* to visualize at this scale
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_6Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.8, vmax=0.8, edgecolor='none', ax=ax)

# visualize the chlorophyll rate on the log scale
floatsDFAllRate_6Dtimeorder['chl_rate_log10'] = floatsDFAllRate_6Dtimeorder['chl_rate'].apply(scale)
floatsDFAllRate_6Dtimeorder
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_6Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
#floatsDFAllRate_6Dtimeorder.chl_rate.dropna().shape   # (1093,) data points
floatsDFAllRate_6Dtimeorder.chl_rate_log10.dropna().shape   # (458,) data points..... notice, chl_rate can be negative, so do not take log10


check the sum of the chlor_a before the merge -57.68458902500565
check the sum of the chlor_a after the merge -57.68458902500565
Out[56]:
(458,)

In [57]:
pd.to_datetime(floatsDFAllRate_6Dtimeorder.time)
type(pd.to_datetime(floatsDFAllRate_6Dtimeorder.time))
ts = pd.Series(0, index=pd.to_datetime(floatsDFAllRate_6Dtimeorder.time) ) # creat a target time series for masking purpose

# take the month out
month = ts.index.month 
# month.shape # a check on the shape of the month.
selector = ((11==month) | (12==month) | (1==month) | (2==month) | (3==month) )  
selector
print('shape of the selector', selector.shape)

print('all the data count in [11-01, 03-31]  is', floatsDFAllRate_6Dtimeorder[selector].chl_rate.dropna().shape) # total (745,)
print('all the data count is', floatsDFAllRate_6Dtimeorder.chl_rate.dropna().shape )   # total (1093,)


shape of the selector (220668,)
all the data count in [11-01, 03-31]  is (745,)
all the data count is (1093,)

In [58]:
# histogram for non standarized data
axfloat = floatsDFAllRate_6Dtimeorder[selector].chl_rate.dropna().hist(bins=100,range=[-0.3,0.3])
axfloat.set_title('6-Day chl_rate')


Out[58]:
<matplotlib.text.Text at 0x11acee1d0>

In [59]:
# standarized series
ts = floatsDFAllRate_6Dtimeorder[selector].chl_rate.dropna()
ts_standardized = (ts - ts.mean())/ts.std()
axts = ts_standardized.hist(bins=100,range=[-0.3,0.3])
axts.set_title('6-Day standardized chl_rate')


Out[59]:
<matplotlib.text.Text at 0x4b60683c8>

In [60]:
# all the data
fig, axes = plt.subplots(nrows=8, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2017), axes.flat) :
    tmpyear = floatsDFAllRate_6Dtimeorder[ (floatsDFAllRate_6Dtimeorder.time > str(i))  & (floatsDFAllRate_6Dtimeorder.time < str(i+1)) ] # if year i
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)   # total is 1088
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r',vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)     
    
# remove the extra figure
ax = plt.subplot(8,2,16)
fig.delaxes(ax)


(56,)
(51,)
(7,)
(38,)
(112,)
(96,)
(154,)
(37,)
(71,)
(22,)
(43,)
(34,)
(188,)
(128,)
(51,)

In [61]:
fig, axes = plt.subplots(nrows=7, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2016), axes.flat) :
    tmpyear = floatsDFAllRate_6Dtimeorder[ (floatsDFAllRate_6Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_6Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)  # the total is 745
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)


(71,)
(1,)
(7,)
(75,)
(51,)
(119,)
(27,)
(55,)
(7,)
(45,)
(0,)
(125,)
(110,)
(52,)

In [62]:
# let's output the data as a csv or hdf file to disk to save the experiment time

df_list = []
for i in range(2002,2017) :
    tmpyear = floatsDFAllRate_6Dtimeorder[ (floatsDFAllRate_6Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_6Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    df_list.append(tmpyear)
    
df_tmp = pd.concat(df_list)
print('all the data count in [11-01, 03-31]  is ', df_tmp.chl_rate.dropna().shape) # again, the total is  (745,)
df_chl_out_6D_modisa = df_tmp[~df_tmp.chl_rate.isnull()] # only keep the non-nan values
#list(df_chl_out_XD.groupby(['id']))   # can see the continuity pattern of the Lagarangian difference for each float id

# output to a csv or hdf file
df_chl_out_6D_modisa.head()


all the data count in [11-01, 03-31]  is  (745,)
Out[62]:
id time lon var_lon vn var_tmp spd var_lat temp lat ve chlor_a chlor_a_log10 chl_rate chl_rate_log10
5181 10206 2002-11-01 67.400875 0.001188 6.497542 1000.000000 11.098375 0.000411 NaN 10.819333 -6.816792 0.132351 -0.878273 -0.011445 NaN
5183 11089 2002-11-01 65.187083 0.000106 5.029292 0.003775 12.775208 0.000057 28.979875 14.236667 -9.695500 0.124708 -0.904106 -0.006008 NaN
5203 34710 2002-11-01 63.136583 0.000115 12.004000 0.001725 12.873292 0.000061 28.993542 16.952292 1.252542 0.404965 -0.392582 0.069651 -1.157071
5440 10206 2002-11-07 67.149208 0.001453 3.659208 1000.000000 6.336958 0.000476 NaN 11.107000 -2.266292 0.130267 -0.885166 -0.002084 NaN
5442 11089 2002-11-07 64.589250 0.000133 -1.580333 0.003873 16.956875 0.000068 28.978875 14.336875 -15.959458 0.188381 -0.724962 0.063673 -1.196042

In [63]:
df_chl_out_6D_modisa.index.name = 'index'  # make it specific for the index name

# CSV CSV CSV CSV with specfic index
df_chl_out_6D_modisa.to_csv('df_chl_out_6D_modisa.csv', sep=',', index_label = 'index')

# load CSV output
test = pd.read_csv('df_chl_out_6D_modisa.csv', index_col='index')
test.head()


Out[63]:
id time lon var_lon vn var_tmp spd var_lat temp lat ve chlor_a chlor_a_log10 chl_rate chl_rate_log10
index
5181 10206 2002-11-01 67.400875 0.001188 6.497542 1000.000000 11.098375 0.000411 NaN 10.819333 -6.816792 0.132351 -0.878273 -0.011445 NaN
5183 11089 2002-11-01 65.187083 0.000106 5.029292 0.003775 12.775208 0.000057 28.979875 14.236667 -9.695500 0.124708 -0.904106 -0.006008 NaN
5203 34710 2002-11-01 63.136583 0.000115 12.004000 0.001725 12.873292 0.000061 28.993542 16.952292 1.252542 0.404965 -0.392582 0.069651 -1.157071
5440 10206 2002-11-07 67.149208 0.001453 3.659208 1000.000000 6.336958 0.000476 NaN 11.107000 -2.266292 0.130267 -0.885166 -0.002084 NaN
5442 11089 2002-11-07 64.589250 0.000133 -1.580333 0.003873 16.956875 0.000068 28.978875 14.336875 -15.959458 0.188381 -0.724962 0.063673 -1.196042

In [ ]: