5Day subsampling on the OceanColor Dataset


In [1]:
import xarray as xr
import numpy as np
import pandas as pd
%matplotlib inline
from matplotlib import pyplot as plt
from dask.diagnostics import ProgressBar
import seaborn as sns
from matplotlib.colors import LogNorm


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.
  "`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)

Load data from disk

We already downloaded a subsetted MODIS-Aqua chlorophyll-a dataset for the Arabian Sea.

We can read all the netcdf files into one xarray Dataset using the open_mfsdataset function. Note that this does not load the data into memory yet. That only happens when we try to access the values.


In [2]:
ds_8day = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_8D.nc')
ds_daily = xr.open_mfdataset('./data_collector_modisa_chla9km/ModisA_Arabian_Sea_chlor_a_9km_*_D.nc')
both_datasets = [ds_8day, ds_daily]

How much data is contained here? Let's get the answer in MB.


In [3]:
print([(ds.nbytes / 1e6) for ds in both_datasets])


[534.295504, 4241.4716]

The 8-day dataset is ~534 MB while the daily dataset is 4.2 GB. These both easily fit in RAM. So let's load them all into memory


In [4]:
[ds.load() for ds in both_datasets]


Out[4]:
[<xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 667)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...,
 <xarray.Dataset>
 Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 5295)
 Coordinates:
   * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
   * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
   * rgb            (rgb) int64 0 1 2
   * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
   * time           (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
 Data variables:
     chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
     palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...]

Fix bad data

In preparing this demo, I noticed that small number of maps had bad data--specifically, they contained large negative values of chlorophyll concentration. Looking closer, I realized that the land/cloud mask had been inverted. So I wrote a function to invert it back and correct the data.


In [5]:
def fix_bad_data(ds):
    # for some reason, the cloud / land mask is backwards on some data
    # this is obvious because there are chlorophyl values less than zero
    bad_data = ds.chlor_a.groupby('time').min() < 0
    # loop through and fix
    for n in np.nonzero(bad_data.values)[0]:
        data = ds.chlor_a[n].values 
        ds.chlor_a.values[n] = np.ma.masked_less(data, 0).filled(np.nan)

In [6]:
[fix_bad_data(ds) for ds in both_datasets]


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in less
  if not reflexive
Out[6]:
[None, None]

In [7]:
ds_8day.chlor_a>0


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[7]:
<xarray.DataArray 'chlor_a' (time: 667, lat: 276, lon: 360)>
array([[[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ...,  True, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False,  True],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False,  True,  True]],

       ..., 
       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]],

       [[False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        ..., 
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False],
        [False, False, False, ..., False, False, False]]], dtype=bool)
Coordinates:
  * lat      (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 27.37 ...
  * lon      (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 45.63 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-12 2002-07-20 ...

Count the number of ocean data points

First we have to figure out the land mask. Unfortunately it doesn't come with the dataset. But we can infer it by counting all the points that have at least one non-nan chlorophyll value.


In [8]:
(ds_8day.chlor_a>0).sum(dim='time').plot()


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[8]:
<matplotlib.collections.QuadMesh at 0x118bf9eb8>

In [9]:
#  find a mask for the land
ocean_mask = (ds_8day.chlor_a>0).sum(dim='time')>0
#ocean_mask = (ds_daily.chlor_a>0).sum(dim='time')>0
num_ocean_points = ocean_mask.sum().values  # compute the total nonzeros regions(data point)
ocean_mask.plot()
plt.title('%g total ocean points' % num_ocean_points)


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/xarray/core/variable.py:1046: RuntimeWarning: invalid value encountered in greater
  if not reflexive
Out[9]:
<matplotlib.text.Text at 0x1134ab358>

In [10]:
#ds_8day

In [11]:
#ds_daily

In [12]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time='2002-11-18',method='nearest').plot(norm=LogNorm())
#ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[12]:
<matplotlib.collections.QuadMesh at 0x11b392a20>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [13]:
#list(ds_daily.groupby('time')) # take a look at what's inside

Now we count up the number of valid points in each snapshot and divide by the total number of ocean points.


In [14]:
'''
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 144, lon: 276, rgb: 3, time: 4748)
'''
ds_daily.groupby('time').count() # information from original data


Out[14]:
<xarray.Dataset>
Dimensions:  (time: 5295)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...
Data variables:
    chlor_a  (time) int64 658 1170 1532 2798 2632 1100 1321 636 2711 1163 ...
    palette  (time) int64 768 768 768 768 768 768 768 768 768 768 768 768 ...

In [15]:
ds_daily.chlor_a.groupby('time').count()/float(num_ocean_points)


Out[15]:
<xarray.DataArray 'chlor_a' (time: 5295)>
array([ 0.01053255,  0.01872809,  0.02452259, ...,  0.        ,
        0.        ,  0.        ])
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-05 2002-07-06 ...

In [16]:
count_8day,count_daily = [ds.chlor_a.groupby('time').count()/float(num_ocean_points)
                            for ds in (ds_8day,ds_daily)]

In [17]:
#count_8day = ds_8day.chl_ocx.groupby('time').count()/float(num_ocean_points)
#coundt_daily = ds_daily.chl_ocx.groupby('time').count()/float(num_ocean_points)

#count_8day, coundt_daily = [ds.chl_ocx.groupby('time').count()/float(num_ocean_points)
#                            for ds in ds_8day, ds_daily] # not work in python 3

In [18]:
plt.figure(figsize=(12,4))
count_8day.plot(color='k')
count_daily.plot(color='r')

plt.legend(['8 day','daily'])


Out[18]:
<matplotlib.legend.Legend at 0x11a1ac5c0>

Seasonal Climatology


In [19]:
count_8day_clim, coundt_daily_clim = [count.groupby('time.month').mean()  # monthly data
                                      for count in (count_8day, count_daily)]

In [20]:
# mean value of the monthly data on the count of nonzeros
plt.figure(figsize=(12,4))
count_8day_clim.plot(color='k')
coundt_daily_clim.plot(color='r')
plt.legend(['8 day', 'daily'])


Out[20]:
<matplotlib.legend.Legend at 0x129c710f0>

From the above figure, we see that data coverage is highest in the winter (especially Feburary) and lowest in summer.

Maps of individual days

Let's grab some data from Febrauary and plot it.


In [21]:
target_date = '2003-02-15'
plt.figure(figsize=(8,6))
ds_8day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[21]:
<matplotlib.collections.QuadMesh at 0x129cfecf8>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [22]:
plt.figure(figsize=(8,6))
ds_daily.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[22]:
<matplotlib.collections.QuadMesh at 0x129874b38>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [23]:
ds_daily.chlor_a[0].sel_points(lon=[65, 70], lat=[16, 18], method='nearest')   # the time is selected!
#ds_daily.chl_ocx[0].sel_points(time= times, lon=lons, lat=times, method='nearest')


Out[23]:
<xarray.DataArray 'chlor_a' (points: 2)>
array([ nan,  nan])
Coordinates:
    time     datetime64[ns] 2002-07-04
    lon      (points) float64 65.04 70.04
    lat      (points) float64 16.04 18.04
  * points   (points) int64 0 1

In [24]:
#ds_daily.chlor_a.sel_points?

In [25]:
ds_5day = ds_daily.resample('5D', dim='time')
ds_5day


Out[25]:
<xarray.Dataset>
Dimensions:        (eightbitcolor: 256, lat: 276, lon: 360, rgb: 3, time: 1059)
Coordinates:
  * lat            (lat) float64 27.96 27.87 27.79 27.71 27.62 27.54 27.46 ...
  * lon            (lon) float64 45.04 45.13 45.21 45.29 45.38 45.46 45.54 ...
  * rgb            (rgb) int64 0 1 2
  * eightbitcolor  (eightbitcolor) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
  * time           (time) datetime64[ns] 2002-07-04 2002-07-09 2002-07-14 ...
Data variables:
    chlor_a        (time, lat, lon) float64 nan nan nan nan nan nan nan nan ...
    palette        (time, rgb, eightbitcolor) float64 -109.0 0.0 108.0 ...

In [26]:
plt.figure(figsize=(8,6))
ds_5day.chlor_a.sel(time=target_date, method='nearest').plot(norm=LogNorm())


Out[26]:
<matplotlib.collections.QuadMesh at 0x12a3cae48>
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/matplotlib/colors.py:1022: RuntimeWarning: invalid value encountered in less_equal
  mask |= resdat <= 0

In [27]:
# check the range for the longitude
print(ds_5day.lon.min(),'\n' ,ds_5day.lat.min())


<xarray.DataArray 'lon' ()>
array(45.04166793823242) 
 <xarray.DataArray 'lat' ()>
array(5.041661739349365)

++++++++++++++++++++++++++++++++++++++++++++++

All GDP Floats

Load the float data

Map a (time, lon, lat) to a value on the cholorphlly value


In [28]:
# in the following we deal with the data from the gdp float
from buyodata import buoydata
import os

In [29]:
# a list of files
fnamesAll = ['./gdp_float/buoydata_1_5000.dat','./gdp_float/buoydata_5001_10000.dat','./gdp_float/buoydata_10001_15000.dat','./gdp_float/buoydata_15001_jun16.dat']

In [30]:
# read them and cancatenate them into one DataFrame
dfAll = pd.concat([buoydata.read_buoy_data(f) for f in fnamesAll])  # around 4~5 minutes

#mask = df.time>='2002-07-04' # we only have data after this data for chlor_a
dfvvAll = dfAll[dfAll.time>='2002-07-04']

sum(dfvvAll.time<'2002-07-04') # recheck whether the time is


Out[30]:
0

In [31]:
# process the data so that the longitude are all >0
print('before processing, the minimum longitude is%f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(), dfvvAll.lon.max()))
mask = dfvvAll.lon<0
dfvvAll.lon[mask] = dfvvAll.loc[mask].lon + 360
print('after processing, the minimum longitude is %f4.3 and maximum is %f4.3' % (dfvvAll.lon.min(),dfvvAll.lon.max()) )

dfvvAll.describe()


before processing, the minimum longitude is0.0000004.3 and maximum is 360.0000004.3
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/ipykernel/__main__.py:4: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/core/generic.py:4695: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._update_inplace(new_data)
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2881: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  exec(code_obj, self.user_global_ns, self.user_ns)
after processing, the minimum longitude is 0.0000004.3 and maximum is 360.0000004.3
Out[31]:
id lat lon temp ve vn spd var_lat var_lon var_tmp
count 2.147732e+07 2.131997e+07 2.131997e+07 1.986179e+07 2.129142e+07 2.129142e+07 2.129142e+07 2.147732e+07 2.147732e+07 2.147732e+07
mean 1.765662e+06 -2.263128e+00 2.124412e+02 1.986121e+01 2.454172e-01 4.708192e-01 2.613427e+01 7.326258e+00 7.326555e+00 7.522298e+01
std 9.452835e+06 3.401115e+01 9.746941e+01 8.339498e+00 2.525050e+01 2.052160e+01 1.939087e+01 8.527853e+01 8.527851e+01 2.637454e+02
min 2.578000e+03 -7.764700e+01 0.000000e+00 -1.685000e+01 -2.916220e+02 -2.601400e+02 0.000000e+00 5.268300e-07 -3.941600e-02 1.001300e-03
25% 4.897500e+04 -3.186000e+01 1.490720e+02 1.437300e+01 -1.411400e+01 -1.044700e+01 1.290300e+01 4.366500e-06 7.512600e-06 1.435700e-03
50% 7.141300e+04 -4.920000e+00 2.153940e+02 2.214400e+01 -5.560000e-01 1.970000e-01 2.176700e+01 8.833600e-06 1.495800e-05 1.691700e-03
75% 1.094330e+05 2.756000e+01 3.064370e+02 2.688900e+01 1.356100e+01 1.109300e+01 3.405900e+01 1.833300e-05 3.627900e-05 2.294200e-03
max 6.399288e+07 8.989900e+01 3.600000e+02 4.595000e+01 4.417070e+02 2.783220e+02 4.421750e+02 1.000000e+03 1.000000e+03 1.000000e+03

In [32]:
# Select only the arabian sea region
arabian_sea = (dfvvAll.lon > 45) & (dfvvAll.lon< 75) & (dfvvAll.lat> 5) & (dfvvAll.lat <28)
# arabian_sea = {'lon': slice(45,75), 'lat': slice(5,28)} # later use this longitude and latitude
floatsAll = dfvvAll.loc[arabian_sea]   # directly use mask
print('dfvvAll.shape is %s, floatsAll.shape is %s' % (dfvvAll.shape, floatsAll.shape) )


dfvvAll.shape is (21477317, 11), floatsAll.shape is (111894, 11)

In [33]:
# avoid run this line repeatedly
# visualize the float around global region
fig, ax  = plt.subplots(figsize=(12,10))
dfvvAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsAll.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[33]:
<matplotlib.axes._subplots.AxesSubplot at 0x233261908>

In [34]:
# pands dataframe cannot do the resamplingn properly
# cause we are really indexing on ['time','id'], pandas.dataframe.resample cannot do this
# TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'
print()




In [35]:
# dump the surface floater data from pandas.dataframe to xarray.dataset
floatsDSAll = xr.Dataset.from_dataframe(floatsAll.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
floatsDSAll


Out[35]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 17499)
Coordinates:
  * time     (time) datetime64[ns] 2002-07-04 2002-07-04T06:00:00 ...
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
Data variables:
    lat      (time, id) float64 nan 16.3 14.03 16.4 14.04 nan 20.11 nan ...
    lon      (time, id) float64 nan 66.23 69.48 64.58 69.51 nan 68.55 nan ...
    temp     (time, id) float64 nan nan nan 28.0 28.53 nan 28.93 nan 27.81 ...
    ve       (time, id) float64 nan 8.68 5.978 6.286 4.844 nan 32.9 nan ...
    vn       (time, id) float64 nan -13.18 -18.05 -7.791 -17.47 nan 15.81 ...
    spd      (time, id) float64 nan 15.78 19.02 10.01 18.13 nan 36.51 nan ...
    var_lat  (time, id) float64 nan 0.0002661 5.01e-05 5.018e-05 5.024e-05 ...
    var_lon  (time, id) float64 nan 0.0006854 8.851e-05 9.018e-05 8.968e-05 ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.003733 0.0667 nan 0.001683 ...

In [36]:
# resample on the xarray.dataset onto two-day frequency
floatsDSAll_5D =floatsDSAll.resample('5D', dim='time')
floatsDSAll_5D


Out[36]:
<xarray.Dataset>
Dimensions:  (id: 259, time: 1023)
Coordinates:
  * id       (id) int64 7574 10206 10208 11089 15703 15707 27069 27139 28842 ...
  * time     (time) datetime64[ns] 2002-07-04 2002-07-09 2002-07-14 ...
Data variables:
    lat      (time, id) float64 nan 16.19 13.7 16.28 13.72 nan 20.16 nan ...
    spd      (time, id) float64 nan 9.792 19.85 15.81 19.42 nan 27.59 nan ...
    var_lon  (time, id) float64 nan 0.006856 0.0001267 0.000128 0.0001035 ...
    vn       (time, id) float64 nan -3.258 -14.38 -7.189 -13.63 nan -1.261 ...
    var_lat  (time, id) float64 nan 0.001761 6.558e-05 6.664e-05 5.604e-05 ...
    lon      (time, id) float64 nan 66.44 69.68 64.83 69.7 nan 69.06 nan ...
    ve       (time, id) float64 nan 8.431 11.62 13.13 11.28 nan 26.06 nan ...
    temp     (time, id) float64 nan nan nan 27.86 28.56 nan 28.94 nan 27.67 ...
    var_tmp  (time, id) float64 nan 1e+03 1e+03 0.00362 0.08265 nan 0.001685 ...

In [37]:
# transfer it back to pandas.dataframe for plotting
floatsDFAll_5D = floatsDSAll_5D.to_dataframe()
floatsDFAll_5D
floatsDFAll_5D = floatsDFAll_5D.reset_index()
floatsDFAll_5D
# visualize the subsamping of floats around arabian region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_5D.plot(kind='scatter', x='lon', y='lat', c='temp', cmap='RdBu_r', edgecolor='none', ax=ax)


Out[37]:
<matplotlib.axes._subplots.AxesSubplot at 0x23323b358>

In [38]:
# get the value for the chllorophy for each data entry
floatsDFAll_5Dtimeorder = floatsDFAll_5D.sort_values(['time','id'],ascending=True)
floatsDFAll_5Dtimeorder # check whether it is time ordered!!
# should we drop nan to speed up??


Out[38]:
id time lat spd var_lon vn var_lat lon ve temp var_tmp
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1023 10206 2002-07-04 16.19070 9.79220 0.006856 -3.25785 0.001761 66.43755 8.43105 NaN 1000.000000
2046 10208 2002-07-04 13.70170 19.84795 0.000127 -14.38240 0.000066 69.68000 11.61810 NaN 1000.000000
3069 11089 2002-07-04 16.28310 15.81310 0.000128 -7.18860 0.000067 64.83270 13.12565 27.86090 0.003620
4092 15703 2002-07-04 13.71820 19.42420 0.000103 -13.63140 0.000056 69.70245 11.28315 28.56105 0.082646
5115 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6138 27069 2002-07-04 20.15560 27.59125 0.000100 -1.26115 0.000055 69.06060 26.05590 28.94305 0.001685
7161 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8184 28842 2002-07-04 18.76870 20.85820 0.000192 -6.57405 0.000093 60.79630 6.22225 27.67170 0.003329
9207 34159 2002-07-04 12.63455 28.87670 0.000098 8.09605 0.000053 59.21560 27.17165 NaN 1000.000000
10230 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
11253 34210 2002-07-04 6.25245 23.24195 0.000137 -18.27155 0.000069 56.81465 -12.81945 26.72150 0.003663
12276 34211 2002-07-04 8.41740 27.24930 0.000108 -13.14195 0.000058 68.18405 22.85300 28.35265 0.003441
13299 34212 2002-07-04 6.46140 44.91405 0.000093 17.38350 0.000052 65.18250 38.18655 28.52460 0.003544
14322 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
15345 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
16368 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
17391 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
18414 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
19437 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
20460 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
21483 34708 2002-07-04 10.20515 40.52780 0.000093 2.85870 0.000051 60.17130 40.13740 27.16585 0.001793
22506 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN
23529 34710 2002-07-04 13.23525 47.69970 0.000094 15.57255 0.000050 50.02370 8.34430 31.06135 0.001846
24552 34714 2002-07-04 13.70670 39.88645 0.000109 8.81165 0.000058 64.10040 38.42605 27.73010 0.001814
25575 34716 2002-07-04 7.57385 38.37455 0.000101 6.56485 0.000055 65.78450 37.06290 28.80910 0.001781
26598 34718 2002-07-04 15.95885 34.51250 0.000114 -27.92385 0.000059 72.64835 19.48765 29.12910 0.001700
27621 34719 2002-07-04 17.60155 24.58105 0.000114 -14.54685 0.000060 71.17005 17.55510 28.93850 0.001604
28644 34720 2002-07-04 14.41830 32.49445 0.000120 -29.74220 0.000064 69.29585 10.30660 28.66575 0.001826
29667 34721 2002-07-04 17.08435 12.96220 0.000115 -9.46595 0.000061 65.46475 7.37165 27.90860 0.001799
... ... ... ... ... ... ... ... ... ... ... ...
235289 3098682 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
236312 60073460 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
237335 60074440 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
238358 60077450 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
239381 60150420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
240404 60454500 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
241427 60656200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
242450 60657200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
243473 60658190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
244496 60659110 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
245519 60659120 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
246542 60659190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
247565 60659200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
248588 60940960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
249611 60940970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
250634 60941960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
251657 60941970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
252680 60942960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
253703 60942970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
254726 60943960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
255749 60943970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
256772 60944960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
257795 60944970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
258818 60945970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
259841 60946960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
260864 60947960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
261887 60947970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
262910 60948960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
263933 60950430 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN
264956 62321420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN

264957 rows × 11 columns


In [39]:
floatsDFAll_5Dtimeorder.lon.dropna().shape  # the longitude data has lots of values (7349,)


Out[39]:
(5955,)

In [40]:
# a little test for the api in loops for the dataframe   
# check df.itertuples? it is faster and preserves the data format
'''
chl_ocx=[]
for row in floats_timeorder.itertuples():
    #print(row)
    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )
    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation
    chl_ocx.append(tmp)
floats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)
chl_ocx[0].to_series
'''


Out[40]:
"\nchl_ocx=[]\nfor row in floats_timeorder.itertuples():\n    #print(row)\n    #print('row.time = %s, row.id=%d, row.lon=%4.3f, row.lat=%4.3f' % (row.time,row.id,row.lon,row.lat)  )\n    tmp=ds_2day.chl_ocx.sel_points(time=[row.time],lon=[row.lon], lat=[row.lat], method='nearest') # interpolation\n    chl_ocx.append(tmp)\nfloats_timeorder['chl_ocx'] = pd.Series(chl_ocx, index=floats_timeorder.index)\nchl_ocx[0].to_series\n"

In [41]:
# this one line avoid the list above
# it took a really long time for 2D interpolation, it takes an hour
tmpAll = ds_5day.chlor_a.sel_points(time=list(floatsDFAll_5Dtimeorder.time),lon=list(floatsDFAll_5Dtimeorder.lon), lat=list(floatsDFAll_5Dtimeorder.lat), method='nearest')
print('the count of nan vaues in tmpAll is',tmpAll.to_series().isnull().sum())


/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less
  indexer = np.where(op(left_distances, right_distances) |
/Users/vyan2000/local/miniconda3/envs/condapython3/lib/python3.5/site-packages/pandas/indexes/base.py:2352: RuntimeWarning: invalid value encountered in less_equal
  indexer = np.where(op(left_distances, right_distances) |
the count of nan vaues in tmpAll is 262906

In [42]:
#print(tmpAll.dropna().shape)
tmpAll.to_series().dropna().shape  # (2051,) good values


Out[42]:
(2051,)

In [44]:
# tmp.to_series() to transfer it from xarray dataset to series
floatsDFAll_5Dtimeorder['chlor_a'] = pd.Series(np.array(tmpAll.to_series()), index=floatsDFAll_5Dtimeorder.index)
print("after editing the dataframe the nan values in 'chlor_a' is", floatsDFAll_5Dtimeorder.chlor_a.isnull().sum() )  # they should be the same values as above

# take a look at the data
floatsDFAll_5Dtimeorder

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_5Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a', cmap='RdBu_r', edgecolor='none', ax=ax)

def scale(x):
    logged = np.log10(x)
    return logged

#print(floatsAll_timeorder['chlor_a'].apply(scale))
floatsDFAll_5Dtimeorder['chlor_a_log10'] = floatsDFAll_5Dtimeorder['chlor_a'].apply(scale)
floatsDFAll_5Dtimeorder
#print("after the transformation the nan values in 'chlor_a_log10' is", floatsAll_timeorder.chlor_a_log10.isnull().sum() )

# visualize the float around the arabian sea region
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAll_5Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chlor_a_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
#floatsDFAll_5Dtimeorder.chlor_a.dropna().shape  # (2051,)
floatsDFAll_5Dtimeorder.chlor_a_log10.dropna().shape  # (2051,)


after editing the dataframe the nan values in 'chlor_a' is 262906
Out[44]:
(2051,)

In [45]:
# take the diff of the chlor_a, and this has to be done in xarray
# transfer the dataframe into xarry dataset again
# take the difference
floatsDFAll_5Dtimeorder


Out[45]:
id time lat spd var_lon vn var_lat lon ve temp var_tmp chlor_a chlor_a_log10
0 7574 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1023 10206 2002-07-04 16.19070 9.79220 0.006856 -3.25785 0.001761 66.43755 8.43105 NaN 1000.000000 NaN NaN
2046 10208 2002-07-04 13.70170 19.84795 0.000127 -14.38240 0.000066 69.68000 11.61810 NaN 1000.000000 NaN NaN
3069 11089 2002-07-04 16.28310 15.81310 0.000128 -7.18860 0.000067 64.83270 13.12565 27.86090 0.003620 NaN NaN
4092 15703 2002-07-04 13.71820 19.42420 0.000103 -13.63140 0.000056 69.70245 11.28315 28.56105 0.082646 NaN NaN
5115 15707 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
6138 27069 2002-07-04 20.15560 27.59125 0.000100 -1.26115 0.000055 69.06060 26.05590 28.94305 0.001685 NaN NaN
7161 27139 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
8184 28842 2002-07-04 18.76870 20.85820 0.000192 -6.57405 0.000093 60.79630 6.22225 27.67170 0.003329 NaN NaN
9207 34159 2002-07-04 12.63455 28.87670 0.000098 8.09605 0.000053 59.21560 27.17165 NaN 1000.000000 NaN NaN
10230 34173 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
11253 34210 2002-07-04 6.25245 23.24195 0.000137 -18.27155 0.000069 56.81465 -12.81945 26.72150 0.003663 NaN NaN
12276 34211 2002-07-04 8.41740 27.24930 0.000108 -13.14195 0.000058 68.18405 22.85300 28.35265 0.003441 NaN NaN
13299 34212 2002-07-04 6.46140 44.91405 0.000093 17.38350 0.000052 65.18250 38.18655 28.52460 0.003544 NaN NaN
14322 34223 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
15345 34310 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
16368 34311 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
17391 34312 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
18414 34314 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
19437 34315 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
20460 34374 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
21483 34708 2002-07-04 10.20515 40.52780 0.000093 2.85870 0.000051 60.17130 40.13740 27.16585 0.001793 NaN NaN
22506 34709 2002-07-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
23529 34710 2002-07-04 13.23525 47.69970 0.000094 15.57255 0.000050 50.02370 8.34430 31.06135 0.001846 NaN NaN
24552 34714 2002-07-04 13.70670 39.88645 0.000109 8.81165 0.000058 64.10040 38.42605 27.73010 0.001814 NaN NaN
25575 34716 2002-07-04 7.57385 38.37455 0.000101 6.56485 0.000055 65.78450 37.06290 28.80910 0.001781 0.110575 -0.956343
26598 34718 2002-07-04 15.95885 34.51250 0.000114 -27.92385 0.000059 72.64835 19.48765 29.12910 0.001700 NaN NaN
27621 34719 2002-07-04 17.60155 24.58105 0.000114 -14.54685 0.000060 71.17005 17.55510 28.93850 0.001604 NaN NaN
28644 34720 2002-07-04 14.41830 32.49445 0.000120 -29.74220 0.000064 69.29585 10.30660 28.66575 0.001826 NaN NaN
29667 34721 2002-07-04 17.08435 12.96220 0.000115 -9.46595 0.000061 65.46475 7.37165 27.90860 0.001799 NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ...
235289 3098682 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
236312 60073460 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
237335 60074440 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
238358 60077450 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
239381 60150420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
240404 60454500 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
241427 60656200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
242450 60657200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
243473 60658190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
244496 60659110 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
245519 60659120 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
246542 60659190 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
247565 60659200 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
248588 60940960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
249611 60940970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
250634 60941960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
251657 60941970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
252680 60942960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
253703 60942970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
254726 60943960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
255749 60943970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
256772 60944960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
257795 60944970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
258818 60945970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
259841 60946960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
260864 60947960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
261887 60947970 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
262910 60948960 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
263933 60950430 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
264956 62321420 2016-06-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

264957 rows × 13 columns


In [46]:
# unstack() will provide a 2d dataframe
# reset_index() will reset all the index as columns

In [48]:
# prepare the data in dataset and about to take the diff
tmp = xr.Dataset.from_dataframe(floatsDFAll_5Dtimeorder.set_index(['time','id']) ) # set time & id as the index); use reset_index to revert this operation
# take the diff on the chlor_a
chlor_a_rate = tmp.diff(dim='time',n=1).chlor_a.to_series().reset_index()
# make the column to a proper name
chlor_a_rate.rename(columns={'chlor_a':'chl_rate'}, inplace='True')
chlor_a_rate


# merge the two dataframes {floatsDFAll_XDtimeorder; chlor_a_rate} into one dataframe based on the index {id, time} and use the left method
floatsDFAllRate_5Dtimeorder=pd.merge(floatsDFAll_5Dtimeorder,chlor_a_rate, on=['time','id'], how = 'left')
floatsDFAllRate_5Dtimeorder

# check 
print('check the sum of the chlor_a before the merge', chlor_a_rate.chl_rate.sum())
print('check the sum of the chlor_a after the merge',floatsDFAllRate_5Dtimeorder.chl_rate.sum())


# visualize the chlorophyll rate, it is *better* to visualize at this scale
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_5Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.8, vmax=0.8, edgecolor='none', ax=ax)

# visualize the chlorophyll rate on the log scale
floatsDFAllRate_5Dtimeorder['chl_rate_log10'] = floatsDFAllRate_5Dtimeorder['chl_rate'].apply(scale)
floatsDFAllRate_5Dtimeorder
fig, ax  = plt.subplots(figsize=(12,10))
floatsDFAllRate_5Dtimeorder.plot(kind='scatter', x='lon', y='lat', c='chl_rate_log10', cmap='RdBu_r', edgecolor='none', ax=ax)
floatsDFAllRate_5Dtimeorder.chl_rate.dropna().shape   # (1101,) data points
#floatsDFAllRate_5Dtimeorder.chl_rate_log10.dropna().shape   # (488,) data points..... notice, chl_rate can be negative, so do not take log10


check the sum of the chlor_a before the merge 121.3619077630341
check the sum of the chlor_a after the merge 121.3619077630341
Out[48]:
(1101,)

In [49]:
pd.to_datetime(floatsDFAllRate_5Dtimeorder.time)
type(pd.to_datetime(floatsDFAllRate_5Dtimeorder.time))
ts = pd.Series(0, index=pd.to_datetime(floatsDFAllRate_5Dtimeorder.time) ) # creat a target time series for masking purpose

# take the month out
month = ts.index.month 
# month.shape # a check on the shape of the month.
selector = ((11==month) | (12==month) | (1==month) | (2==month) | (3==month) )  
selector
print('shape of the selector', selector.shape)

print('all the data count in [11-01, 03-31]  is', floatsDFAllRate_5Dtimeorder[selector].chl_rate.dropna().shape) # total (754,)
print('all the data count is', floatsDFAllRate_5Dtimeorder.chl_rate.dropna().shape )   # total (1101,)


shape of the selector (264957,)
all the data count in [11-01, 03-31]  is (754,)
all the data count is (1101,)

In [50]:
# histogram for non standarized data
axfloat = floatsDFAllRate_5Dtimeorder[selector].chl_rate.dropna().hist(bins=100,range=[-0.3,0.3])
axfloat.set_title('5-Day chl_rate')


Out[50]:
<matplotlib.text.Text at 0x11a9c9320>

In [51]:
# standarized series
ts = floatsDFAllRate_5Dtimeorder[selector].chl_rate.dropna()
ts_standardized = (ts - ts.mean())/ts.std()
axts = ts_standardized.hist(bins=100,range=[-0.3,0.3])
axts.set_title('5-Day standardized chl_rate')


Out[51]:
<matplotlib.text.Text at 0x4ed837780>

In [52]:
# all the data
fig, axes = plt.subplots(nrows=8, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2017), axes.flat) :
    tmpyear = floatsDFAllRate_5Dtimeorder[ (floatsDFAllRate_5Dtimeorder.time > str(i))  & (floatsDFAllRate_5Dtimeorder.time < str(i+1)) ] # if year i
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)   # total is 1101
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r',vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)     
    
# remove the extra figure
ax = plt.subplot(8,2,16)
fig.delaxes(ax)


(53,)
(59,)
(1,)
(44,)
(104,)
(76,)
(151,)
(34,)
(60,)
(14,)
(49,)
(44,)
(226,)
(129,)
(57,)

In [54]:
fig, axes = plt.subplots(nrows=7, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

for i, ax in zip(range(2002,2016), axes.flat) :
    tmpyear = floatsDFAllRate_5Dtimeorder[ (floatsDFAllRate_5Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_5Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    #fig, ax  = plt.subplots(figsize=(12,10))
    print(tmpyear.chl_rate.dropna().shape)  # the total is 754
    tmpyear.plot(kind='scatter', x='lon', y='lat', c='chl_rate', cmap='RdBu_r', vmin=-0.6, vmax=0.6, edgecolor='none', ax=ax)
    ax.set_title('year %g' % i)


(73,)
(1,)
(6,)
(71,)
(39,)
(120,)
(30,)
(45,)
(5,)
(46,)
(0,)
(153,)
(105,)
(60,)

In [ ]:


In [ ]:


In [55]:
# let's output the data as a csv or hdf file to disk to save the experiment time

df_list = []
for i in range(2002,2017) :
    tmpyear = floatsDFAllRate_5Dtimeorder[ (floatsDFAllRate_5Dtimeorder.time >= (str(i)+ '-11-01') )  & (floatsDFAllRate_5Dtimeorder.time <= (str(i+1)+'-03-31') ) ] # if year i
    # select only particular month, Nov 1 to March 31
    df_list.append(tmpyear)
    
df_tmp = pd.concat(df_list)
print('all the data count in [11-01, 03-31]  is ', df_tmp.chl_rate.dropna().shape) # again, the total is  (754,)
df_chl_out_5D_modisa = df_tmp[~df_tmp.chl_rate.isnull()] # only keep the non-nan values
#list(df_chl_out_XD.groupby(['id']))   # can see the continuity pattern of the Lagarangian difference for each float id

# output to a csv or hdf file
df_chl_out_5D_modisa.head()


all the data count in [11-01, 03-31]  is  (754,)
Out[55]:
id time lat spd var_lon vn var_lat lon ve temp var_tmp chlor_a chlor_a_log10 chl_rate chl_rate_log10
6239 34710 2002-11-01 16.90790 13.19585 0.000120 12.28250 0.000063 63.13095 1.02405 28.99885 0.001754 0.386388 -0.412976 0.060749 -1.216459
6476 10206 2002-11-06 11.04970 9.69775 0.001602 6.51645 0.000517 67.17675 -4.16140 NaN 1000.000000 0.133946 -0.873070 0.005581 -2.253287
6498 34710 2002-11-06 17.33905 11.97215 0.000159 10.54180 0.000079 63.14845 -2.06740 28.83270 0.001884 0.379611 -0.420661 -0.006777 NaN
6504 34721 2002-11-06 12.58915 15.20435 0.000143 0.91040 0.000071 67.82805 10.47775 29.49700 0.001856 0.148202 -0.829147 0.009522 -2.021272
6735 10206 2002-11-11 11.16030 2.94440 0.001463 1.00360 0.000474 67.11145 -0.92305 NaN 1000.000000 0.125101 -0.902739 -0.008845 NaN

In [56]:
df_chl_out_5D_modisa.index.name = 'index'  # make it specific for the index name

# CSV CSV CSV CSV with specfic index
df_chl_out_5D_modisa.to_csv('df_chl_out_5D_modisa.csv', sep=',', index_label = 'index')

# load CSV output
test = pd.read_csv('df_chl_out_5D_modisa.csv', index_col='index')
test.head()


Out[56]:
id time lat spd var_lon vn var_lat lon ve temp var_tmp chlor_a chlor_a_log10 chl_rate chl_rate_log10
index
6239 34710 2002-11-01 16.90790 13.19585 0.000120 12.28250 0.000063 63.13095 1.02405 28.99885 0.001754 0.386388 -0.412976 0.060749 -1.216459
6476 10206 2002-11-06 11.04970 9.69775 0.001602 6.51645 0.000517 67.17675 -4.16140 NaN 1000.000000 0.133946 -0.873070 0.005581 -2.253287
6498 34710 2002-11-06 17.33905 11.97215 0.000159 10.54180 0.000079 63.14845 -2.06740 28.83270 0.001884 0.379611 -0.420661 -0.006777 NaN
6504 34721 2002-11-06 12.58915 15.20435 0.000143 0.91040 0.000071 67.82805 10.47775 29.49700 0.001856 0.148202 -0.829147 0.009522 -2.021272
6735 10206 2002-11-11 11.16030 2.94440 0.001463 1.00360 0.000474 67.11145 -0.92305 NaN 1000.000000 0.125101 -0.902739 -0.008845 NaN

In [ ]: