Note: This notebook requires TensorFlow 2.0 as we are creating a model using Keras.
TODO: Complete the lab notebook #TODO sections. You can refer to the solutions/ notebook for reference.
In [ ]:
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
In [ ]:
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
In [ ]:
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
In [ ]:
%%bash
ls *.csv
In [ ]:
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
In [ ]:
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column. Treat is_male and plurality as strings.
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
In [ ]:
def features_and_labels(row_data):
for unwanted_col in ['key']:
row_data.pop(unwanted_col)
label = row_data.pop(LABEL_COLUMN)
return row_data, label # features, label
# load the training data
def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL):
dataset = (tf.data.experimental.make_csv_dataset(pattern, batch_size, CSV_COLUMNS, DEFAULTS)
.map(features_and_labels) # features, label
)
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(1000).repeat()
dataset = dataset.prefetch(1) # take advantage of multi-threading; 1=AUTOTUNE
return dataset
Next, define the feature columns. mother_age and gestation_weeks should be numeric. The others (is_male, plurality) should be categorical.
In [ ]:
## Build a Keras wide-and-deep model using its Functional API
def rmse(y_true, y_pred):
return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true)))
# Helper function to handle categorical columns
def categorical_fc(name, values):
orig = tf.feature_column.categorical_column_with_vocabulary_list(name, values)
wrapped = tf.feature_column.indicator_column(orig)
return orig, wrapped
def build_wd_model(dnn_hidden_units = [64, 32], nembeds = 3):
# input layer
deep_inputs = {
colname : tf.keras.layers.Input(name=colname, shape=(), dtype='float32')
for colname in ['mother_age', 'gestation_weeks']
}
wide_inputs = {
colname : tf.keras.layers.Input(name=colname, shape=(), dtype='string')
for colname in ['is_male', 'plurality']
}
inputs = {**wide_inputs, **deep_inputs}
# feature columns from inputs
deep_fc = {
colname : tf.feature_column.numeric_column(colname)
for colname in ['mother_age', 'gestation_weeks']
}
wide_fc = {}
is_male, wide_fc['is_male'] = categorical_fc('is_male', ['True', 'False', 'Unknown'])
plurality, wide_fc['plurality'] = categorical_fc('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)'])
# TODO bucketize the float fields. This makes them wide
# https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column
age_buckets = tf.feature_column.bucketized_column() # TODO
wide_fc['age_buckets'] = tf.feature_column.indicator_column(age_buckets)
gestation_buckets = tf.feature_column.bucketized_column() # TODO
wide_fc['gestation_buckets'] = tf.feature_column.indicator_column(gestation_buckets)
# cross all the wide columns. We have to do the crossing before we one-hot encode
crossed = tf.feature_column.crossed_column(
[is_male, plurality, age_buckets, gestation_buckets], hash_bucket_size=20000)
deep_fc['crossed_embeds'] = tf.feature_column.embedding_column(crossed, nembeds)
# the constructor for DenseFeatures takes a list of numeric columns
# The Functional API in Keras requires that you specify: LayerConstructor()(inputs)
wide_inputs = tf.keras.layers.DenseFeatures() # TODO
deep_inputs = tf.keras.layers.DenseFeatures() # TODO
# hidden layers for the deep side
layers = [int(x) for x in dnn_hidden_units]
deep = deep_inputs
for layerno, numnodes in enumerate(layers):
deep = tf.keras.layers.Dense(numnodes, activation='relu', name='dnn_{}'.format(layerno+1))(deep)
deep_out = deep
# linear model for the wide side
wide_out = tf.keras.layers.Dense(10, activation='relu', name='linear')(wide_inputs)
# concatenate the two sides
both = tf.keras.layers.concatenate([deep_out, wide_out], name='both')
# final output is a linear activation because this is regression
output = tf.keras.layers.Dense(1, activation='linear', name='weight')(both)
model = tf.keras.models.Model(inputs, output)
model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse'])
return model
print("Here is our Wide-and-Deep architecture so far:\n")
model = build_wd_model()
print(model.summary())
We can visualize the DNN using the Keras plot_model utility.
In [ ]:
tf.keras.utils.plot_model(model, 'wd_model.png', show_shapes=False, rankdir='LR')
In [ ]:
TRAIN_BATCH_SIZE = 32
NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, so it will wrap around
NUM_EVALS = 5 # how many times to evaluate
NUM_EVAL_EXAMPLES = 10000 # enough to get a reasonable sample, but not so much that it slows down
trainds = load_dataset('train*', TRAIN_BATCH_SIZE, tf.estimator.ModeKeys.TRAIN)
evalds = load_dataset('eval*', 1000, tf.estimator.ModeKeys.EVAL).take(NUM_EVAL_EXAMPLES//1000)
steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS)
history = model.fit(trainds,
validation_data=evalds,
epochs=NUM_EVALS,
steps_per_epoch=steps_per_epoch)
In [ ]:
# plot
import matplotlib.pyplot as plt
nrows = 1
ncols = 2
fig = plt.figure(figsize=(10, 5))
for idx, key in enumerate(['loss', 'rmse']):
ax = fig.add_subplot(nrows, ncols, idx+1)
plt.plot(history.history[key])
plt.plot(history.history['val_{}'.format(key)])
plt.title('model {}'.format(key))
plt.ylabel(key)
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left');
In [ ]:
import shutil, os, datetime
OUTPUT_DIR = 'babyweight_trained'
shutil.rmtree(OUTPUT_DIR, ignore_errors=True)
EXPORT_PATH = os.path.join(OUTPUT_DIR, datetime.datetime.now().strftime('%Y%m%d%H%M%S'))
tf.saved_model.save(model, EXPORT_PATH) # with default serving function
print("Exported trained model to {}".format(EXPORT_PATH))
In [ ]:
!ls $EXPORT_PATH
To begin TensorBoard from within AI Platform Notebooks, click the + symbol in the top left corner and select the Tensorboard icon to create a new TensorBoard.
In TensorBoard, look at the learned embeddings. Are they getting clustered? How about the weights for the hidden layers? What if you run this longer? What happens if you change the batchsize?
Copyright 2017-2018 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License