This notebook illustrates:
In [ ]:
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-east1' #'us-central1'
In [ ]:
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
In [ ]:
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
In [ ]:
%%bash
ls *.csv
In [ ]:
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
In [ ]:
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column. Treat is_male and plurality as strings.
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
In [ ]:
def features_and_labels(row_data):
for unwanted_col in ['key']:
row_data.pop(unwanted_col)
label = row_data.pop(LABEL_COLUMN)
return row_data, label # features, label
# load the training data
def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL):
dataset = (tf.data.experimental.make_csv_dataset(pattern, batch_size, CSV_COLUMNS, DEFAULTS)
.map(features_and_labels) # features, label
)
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(1000).repeat()
dataset = dataset.prefetch(1) # take advantage of multi-threading; 1=AUTOTUNE
return dataset
Next, define the feature columns. mother_age and gestation_weeks should be numeric. The others (is_male, plurality) should be categorical.
In [ ]:
## Build a simple Keras DNN using its Functional API
def rmse(y_true, y_pred):
return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true)))
# Helper function to handle categorical columns
def categorical_fc(name, values):
return tf.feature_column.indicator_column(
tf.feature_column.categorical_column_with_vocabulary_list(name, values))
def build_dnn_model():
# input layer
inputs = {
colname : tf.keras.layers.Input(name=colname, shape=(), dtype='float32')
for colname in ['mother_age', 'gestation_weeks']
}
inputs.update({
colname : tf.keras.layers.Input(name=colname, shape=(), dtype='string')
for colname in ['is_male', 'plurality']
})
# feature columns from inputs
feature_columns = {
colname : tf.feature_column.numeric_column(colname)
for colname in ['mother_age', 'gestation_weeks']
}
if False:
# Until TF-serving supports 2.0, so as to get servable model
feature_columns['is_male'] = categorical_fc('is_male', ['True', 'False', 'Unknown'])
feature_columns['plurality'] = categorical_fc('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)'])
# the constructor for DenseFeatures takes a list of numeric columns
# The Functional API in Keras requires that you specify: LayerConstructor()(inputs)
dnn_inputs = tf.keras.layers.DenseFeatures(feature_columns.values())(inputs)
# two hidden layers of [64, 32] just in like the BQML DNN
h1 = tf.keras.layers.Dense(64, activation='relu', name='h1')(dnn_inputs)
h2 = tf.keras.layers.Dense(32, activation='relu', name='h2')(h1)
# final output is a linear activation because this is regression
output = tf.keras.layers.Dense(1, activation='linear', name='babyweight')(h2)
model = tf.keras.models.Model(inputs, output)
model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse'])
return model
print("Here is our DNN architecture so far:\n")
# note how to use strategy to do distributed training
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = build_dnn_model()
print(model.summary())
We can visualize the DNN using the Keras plot_model utility.
In [ ]:
tf.keras.utils.plot_model(model, 'dnn_model.png', show_shapes=False, rankdir='LR')
In [ ]:
TRAIN_BATCH_SIZE = 32
NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, so it will wrap around
NUM_EVALS = 5 # how many times to evaluate
NUM_EVAL_EXAMPLES = 10000 # enough to get a reasonable sample, but not so much that it slows down
trainds = load_dataset('train*', TRAIN_BATCH_SIZE, tf.estimator.ModeKeys.TRAIN)
evalds = load_dataset('eval*', 1000, tf.estimator.ModeKeys.EVAL).take(NUM_EVAL_EXAMPLES//1000)
steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS)
history = model.fit(trainds,
validation_data=evalds,
epochs=NUM_EVALS,
steps_per_epoch=steps_per_epoch)
In [ ]:
# plot
import matplotlib.pyplot as plt
nrows = 1
ncols = 2
fig = plt.figure(figsize=(10, 5))
for idx, key in enumerate(['loss', 'rmse']):
ax = fig.add_subplot(nrows, ncols, idx+1)
plt.plot(history.history[key])
plt.plot(history.history['val_{}'.format(key)])
plt.title('model {}'.format(key))
plt.ylabel(key)
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left');
In [ ]:
# Serving function that passes through keys
@tf.function(input_signature=[{
'is_male': tf.TensorSpec([None,], dtype=tf.string, name='is_male'),
'mother_age': tf.TensorSpec([None,], dtype=tf.float32, name='mother_age'),
'plurality': tf.TensorSpec([None,], dtype=tf.string, name='plurality'),
'gestation_weeks': tf.TensorSpec([None,], dtype=tf.float32, name='gestation_weeks'),
'key': tf.TensorSpec([None,], dtype=tf.string, name='key')
}])
def my_serve(inputs):
feats = inputs.copy()
key = feats.pop('key')
output = model(feats)
return {'key': key, 'babyweight': output}
In [ ]:
import shutil, os, datetime
OUTPUT_DIR = './export/babyweight'
shutil.rmtree(OUTPUT_DIR, ignore_errors=True)
EXPORT_PATH = os.path.join(OUTPUT_DIR, datetime.datetime.now().strftime('%Y%m%d%H%M%S'))
tf.saved_model.save(model, EXPORT_PATH, signatures={'serving_default': my_serve})
print("Exported trained model to {}".format(EXPORT_PATH))
os.environ['EXPORT_PATH'] = EXPORT_PATH
In [ ]:
!find $EXPORT_PATH
To begin TensorBoard from within AI Platform Notebooks, click the + symbol in the top left corner and select the Tensorboard icon to create a new TensorBoard.
In TensorBoard, look at the learned embeddings. Are they getting clustered? How about the weights for the hidden layers? What if you run this longer? What happens if you change the batchsize?
In [ ]:
!saved_model_cli show --tag_set serve --signature_def serving_default --dir {EXPORT_PATH}
In [ ]:
%%bash
MODEL_NAME="babyweight"
VERSION_NAME="dnn"
MODEL_LOCATION=$EXPORT_PATH
echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes"
if [[ $(gcloud ai-platform models list --format='value(name)' | grep $MODEL_NAME) ]]; then
echo "The model named $MODEL_NAME already exists."
else
# create model
echo "Creating $MODEL_NAME model now."
gcloud ai-platform models create --regions=$REGION $MODEL_NAME
fi
if [[ $(gcloud ai-platform versions list --model $MODEL_NAME --format='value(name)' | grep $VERSION_NAME) ]]; then
echo "Deleting already the existing model $MODEL_NAME:$VERSION_NAME ... "
gcloud ai-platform versions delete --model=$MODEL_NAME $VERSION_NAME
echo "Please run this cell again if you don't see a Creating message ... "
sleep 2
fi
# create model
echo "Creating $MODEL_NAME:$VERSION_NAME"
gcloud ai-platform versions create --model=$MODEL_NAME $VERSION_NAME --async \
--framework=tensorflow --python-version=3.5 --runtime-version=1.14 \
--origin=$MODEL_LOCATION --staging-bucket=gs://$BUCKET
Monitor the model creation at GCP Console > AI Platform and once the model version dnn
is created, proceed to the next cell.
In [ ]:
%%writefile input.json
{"key": "b1", "is_male": "True", "mother_age": 26.0, "plurality": "Single(1)", "gestation_weeks": 39}
{"key": "b2", "is_male": "True", "mother_age": 33.0, "plurality": "Single(1)", "gestation_weeks": 41}
{"key": "g1", "is_male": "False", "mother_age": 26.0, "plurality": "Single(1)", "gestation_weeks": 39}
{"key": "g2", "is_male": "False", "mother_age": 33.0, "plurality": "Single(1)", "gestation_weeks": 41}
In [ ]:
!gcloud ai-platform predict --model babyweight --json-instances input.json --version dnn
This is the code that exists in serving/application/main.py, i.e. the code in the web application that accesses the ML API.
In [ ]:
from oauth2client.client import GoogleCredentials
from googleapiclient import discovery
credentials = GoogleCredentials.get_application_default()
api = discovery.build('ml', 'v1', credentials=credentials)
project = PROJECT
model_name = 'babyweight'
version_name = 'dnn'
input_data = {
'instances': [
{
'key': 'b1',
'is_male': 'True',
'mother_age': 26.0,
'plurality': 'Single(1)',
'gestation_weeks': 39
},
{
'key': 'g1',
'is_male': 'False',
'mother_age': 29.0,
'plurality': 'Single(1)',
'gestation_weeks': 38
},
{
'key': 'b2',
'is_male': 'True',
'mother_age': 26.0,
'plurality': 'Triplets(3)',
'gestation_weeks': 39
},
{
'key': 'u1',
'is_male': 'Unknown',
'mother_age': 29.0,
'plurality': 'Multiple(2+)',
'gestation_weeks': 38
},
]
}
parent = 'projects/%s/models/%s/versions/%s' % (project, model_name, version_name)
prediction = api.projects().predict(body=input_data, name=parent).execute()
print(prediction)
print(prediction['predictions'][0]['babyweight'][0])
Copyright 2017-2019 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License