Executed: Mon Mar 27 11:35:46 2017

Duration: 8 seconds.

usALEX-5samples - Template

This notebook is executed through 8-spots paper analysis. For a direct execution, uncomment the cell below.


In [1]:
ph_sel_name = "Dex"

In [2]:
data_id = "12d"

In [3]:
# ph_sel_name = "all-ph"
# data_id = "7d"

Load software and filenames definitions


In [4]:
from fretbursts import *


 - Optimized (cython) burst search loaded.
 - Optimized (cython) photon counting loaded.
--------------------------------------------------------------
 You are running FRETBursts (version 0.5.9).

 If you use this software please cite the following paper:

   FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET
   Ingargiola et al. (2016). http://dx.doi.org/10.1371/journal.pone.0160716 

--------------------------------------------------------------

In [5]:
init_notebook()
from IPython.display import display

Data folder:


In [6]:
data_dir = './data/singlespot/'

In [7]:
import os
data_dir = os.path.abspath(data_dir) + '/'
assert os.path.exists(data_dir), "Path '%s' does not exist." % data_dir

List of data files:


In [8]:
from glob import glob
file_list = sorted(f for f in glob(data_dir + '*.hdf5') if '_BKG' not in f)
## Selection for POLIMI 2012-11-26 datatset
labels = ['17d', '27d', '7d', '12d', '22d']
files_dict = {lab: fname for lab, fname in zip(labels, file_list)}
files_dict


Out[8]:
{'12d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/007_dsDNA_12d_3nM_green100u_red40u.hdf5',
 '17d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/004_dsDNA_17d_green100u_red40u.hdf5',
 '22d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/008_dsDNA_22d_500pM_green100u_red40u.hdf5',
 '27d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/005_dsDNA_27d_green100u_red40u.hdf5',
 '7d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/006_dsDNA_7d_green100u_red40u.hdf5'}

In [9]:
ph_sel_map = {'all-ph': Ph_sel('all'), 'Dex': Ph_sel(Dex='DAem'), 
              'DexDem': Ph_sel(Dex='Dem')}
ph_sel = ph_sel_map[ph_sel_name]

data_id, ph_sel_name


Out[9]:
('12d', 'Dex')

Data load

Initial loading of the data:


In [10]:
d = loader.photon_hdf5(filename=files_dict[data_id])

Laser alternation selection

At this point we have only the timestamps and the detector numbers:


In [11]:
d.ph_times_t, d.det_t


Out[11]:
([array([      42190,       56253,       56263, ..., 47999942928,
         47999959323, 48000016759])],
 [array([1, 0, 0, ..., 1, 1, 1], dtype=uint32)])

We need to define some parameters: donor and acceptor ch, excitation period and donor and acceptor excitiations:


In [12]:
d.add(det_donor_accept=(0, 1), alex_period=4000, D_ON=(2850, 580), A_ON=(900, 2580), offset=0)

We should check if everithing is OK with an alternation histogram:


In [13]:
plot_alternation_hist(d)


If the plot looks good we can apply the parameters with:


In [14]:
loader.alex_apply_period(d)


# Total photons (after ALEX selection):   1,642,933
#  D  photons in D+A excitation periods:    404,153
#  A  photons in D+A excitation periods:  1,238,780
# D+A photons in  D  excitation period:   1,043,678
# D+A photons in  A  excitation period:     599,255

Measurements infos

All the measurement data is in the d variable. We can print it:


In [15]:
d


Out[15]:
singlespot_007_dsDNA_12d_3nM_green100u_red40u G1.000

Or check the measurements duration:


In [16]:
d.time_max


Out[16]:
599.99949153749992

Compute background

Compute the background using automatic threshold:


In [17]:
d.calc_bg(bg.exp_fit, time_s=60, tail_min_us='auto', F_bg=1.7)


 - Calculating BG rates ... [DONE]

In [18]:
dplot(d, timetrace_bg)


Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x122d64ac8>

In [19]:
d.rate_m, d.rate_dd, d.rate_ad, d.rate_aa


Out[19]:
([1960.0483965382143],
 [406.04619715470801],
 [902.31032918273252],
 [628.25703861394027])

Burst search and selection


In [20]:
bs_kws = dict(L=10, m=10, F=7, ph_sel=ph_sel)
d.burst_search(**bs_kws)


 - Performing burst search (verbose=False) ... - Recomputing background limits for Dex ... [DONE]
 - Recomputing background limits for all ... [DONE]
 - Fixing  burst data to refer to ph_times_m ... [DONE]
[DONE]
 - Calculating burst periods ...[DONE]
 - Counting D and A ph and calculating FRET ... 
   - Applying background correction.
   - Applying leakage correction.
   - Applying direct excitation correction.
   [DONE Counting D/A]

In [21]:
th1 = 30
ds = d.select_bursts(select_bursts.size, th1=30)

In [22]:
bursts = (bext.burst_data(ds, include_bg=True, include_ph_index=True)
          .round({'E': 6, 'S': 6, 'bg_d': 3, 'bg_a': 3, 'bg_aa': 3, 'nd': 3, 'na': 3, 'naa': 3, 'nda': 3, 'nt': 3, 'width_ms': 4}))

In [23]:
bursts.head()


Out[23]:
E S bg_a bg_aa bg_d bp i_end i_start na naa nd nda nt size_raw t_end t_start width_ms
0 0.693422 0.648823 3.187 2.335 1.407 0 609 399 91.813 71.665 40.593 -0.146 204.070 211 0.145293 0.141990 3.3024
1 0.697261 0.768444 3.728 2.731 1.646 0 1394 1307 42.272 18.269 18.354 0.829 78.895 88 0.373403 0.369540 3.8625
2 0.082435 1.016076 2.119 1.553 0.936 0 1900 1862 2.881 -0.553 32.064 -0.097 34.392 39 0.540750 0.538554 2.1959
3 0.830743 0.455655 3.575 2.620 1.579 0 2823 2720 36.425 52.380 7.421 -0.164 96.227 104 0.833203 0.829499 3.7043
4 0.638726 0.727365 3.322 2.434 1.467 0 3765 3653 48.678 28.566 27.533 0.848 104.776 113 1.045994 1.042551 3.4425

In [24]:
burst_fname = ('results/bursts_usALEX_{sample}_{ph_sel}_F{F:.1f}_m{m}_size{th}.csv'
               .format(sample=data_id, th=th1, **bs_kws))
burst_fname


Out[24]:
'results/bursts_usALEX_12d_Dex_F7.0_m10_size30.csv'

In [25]:
bursts.to_csv(burst_fname)

In [26]:
assert d.dir_ex == 0
assert d.leakage == 0

In [27]:
print(d.ph_sel)
dplot(d, hist_fret);


Dex

In [28]:
# if data_id in ['7d', '27d']:
#     ds = d.select_bursts(select_bursts.size, th1=20)
# else:
#     ds = d.select_bursts(select_bursts.size, th1=30)

In [29]:
ds = d.select_bursts(select_bursts.size, add_naa=False, th1=30)

In [30]:
n_bursts_all = ds.num_bursts[0]

In [31]:
def select_and_plot_ES(fret_sel, do_sel):
    ds_fret= ds.select_bursts(select_bursts.ES, **fret_sel)
    ds_do = ds.select_bursts(select_bursts.ES, **do_sel)
    bpl.plot_ES_selection(ax, **fret_sel)
    bpl.plot_ES_selection(ax, **do_sel)    
    return ds_fret, ds_do

In [32]:
ax = dplot(ds, hist2d_alex, S_max_norm=2, scatter_alpha=0.1)

if data_id == '7d':
    fret_sel = dict(E1=0.60, E2=1.2, S1=0.2, S2=0.9, rect=False)
    do_sel = dict(E1=-0.2, E2=0.5, S1=0.8, S2=2, rect=True)    
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)
    
elif data_id == '12d':
    fret_sel = dict(E1=0.30,E2=1.2,S1=0.131,S2=0.9, rect=False)
    do_sel = dict(E1=-0.4, E2=0.4, S1=0.8, S2=2, rect=False)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)

elif data_id == '17d':
    fret_sel = dict(E1=0.01, E2=0.98, S1=0.14, S2=0.88, rect=False)
    do_sel = dict(E1=-0.4, E2=0.4, S1=0.80, S2=2, rect=False)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)

elif data_id == '22d':
    fret_sel = dict(E1=-0.16, E2=0.6, S1=0.2, S2=0.80, rect=False)
    do_sel = dict(E1=-0.2, E2=0.4, S1=0.85, S2=2, rect=True)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)    

elif data_id == '27d':
    fret_sel = dict(E1=-0.1, E2=0.5, S1=0.2, S2=0.82, rect=False)
    do_sel = dict(E1=-0.2, E2=0.4, S1=0.88, S2=2, rect=True)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)



In [33]:
n_bursts_do = ds_do.num_bursts[0]
n_bursts_fret = ds_fret.num_bursts[0]

n_bursts_do, n_bursts_fret


Out[33]:
(486, 1157)

In [34]:
d_only_frac = 1.*n_bursts_do/(n_bursts_do + n_bursts_fret)
print ('D-only fraction:', d_only_frac)


D-only fraction: 0.295800365186

In [35]:
dplot(ds_fret, hist2d_alex, scatter_alpha=0.1);



In [36]:
dplot(ds_do, hist2d_alex, S_max_norm=2, scatter=False);


Donor Leakage fit

Half-Sample Mode

Fit peak usng the mode computed with the half-sample algorithm (Bickel 2005).


In [37]:
def hsm_mode(s):
    """
    Half-sample mode (HSM) estimator of `s`.

    `s` is a sample from a continuous distribution with a single peak.
    
    Reference:
        Bickel, Fruehwirth (2005). arXiv:math/0505419
    """
    s = memoryview(np.sort(s))
    i1 = 0
    i2 = len(s)

    while i2 - i1 > 3:
        n = (i2 - i1) // 2
        w = [s[n-1+i+i1] - s[i+i1] for i in range(n)]
        i1 = w.index(min(w)) + i1
        i2 = i1 + n

    if i2 - i1 == 3:
        if s[i1+1] - s[i1] < s[i2] - s[i1 + 1]:
            i2 -= 1
        elif s[i1+1] - s[i1] > s[i2] - s[i1 + 1]:
            i1 += 1
        else:
            i1 = i2 = i1 + 1

    return 0.5*(s[i1] + s[i2])

In [38]:
E_pr_do_hsm = hsm_mode(ds_do.E[0])
print ("%s: E_peak(HSM) = %.2f%%" % (ds.ph_sel, E_pr_do_hsm*100))


Dex: E_peak(HSM) = 9.81%

Gaussian Fit

Fit the histogram with a gaussian:


In [39]:
E_fitter = bext.bursts_fitter(ds_do, weights=None)
E_fitter.histogram(bins=np.arange(-0.2, 1, 0.03))

In [40]:
E_fitter.fit_histogram(model=mfit.factory_gaussian())
E_fitter.params


Out[40]:
amplitude center sigma
0 1.00126 0.102115 0.0582643

In [41]:
res = E_fitter.fit_res[0]
res.params.pretty_print()


Name          Value      Min      Max   Stderr     Vary     Expr
amplitude     1.001     -inf      inf  0.01367     True     None
center       0.1021       -1        2 0.0009189     True     None
fwhm         0.1372     -inf      inf 0.002164    False 2.3548200*sigma
height        6.856     -inf      inf  0.09363    False 0.3989423*amplitude/max(1.e-15, sigma)
sigma       0.05826        0      inf 0.0009189     True     None

In [42]:
E_pr_do_gauss = res.best_values['center']
E_pr_do_gauss


Out[42]:
0.10211487259133434

KDE maximum


In [43]:
bandwidth = 0.03
E_range_do = (-0.1, 0.15)
E_ax = np.r_[-0.2:0.401:0.0002]

E_fitter.calc_kde(bandwidth=bandwidth)
E_fitter.find_kde_max(E_ax, xmin=E_range_do[0], xmax=E_range_do[1])
E_pr_do_kde = E_fitter.kde_max_pos[0]
E_pr_do_kde


Out[43]:
0.099800000000008604

Leakage summary


In [44]:
mfit.plot_mfit(ds_do.E_fitter, plot_kde=True, plot_model=False)
plt.axvline(E_pr_do_hsm, color='m', label='HSM')
plt.axvline(E_pr_do_gauss, color='k', label='Gauss')
plt.axvline(E_pr_do_kde, color='r', label='KDE')
plt.xlim(0, 0.3)
plt.legend()
print('Gauss: %.2f%%\n  KDE: %.2f%%\n  HSM: %.2f%%' % 
      (E_pr_do_gauss*100, E_pr_do_kde*100, E_pr_do_hsm*100))


Gauss: 10.21%
  KDE: 9.98%
  HSM: 9.81%

Burst size distribution


In [45]:
nt_th1 = 50

In [46]:
dplot(ds_fret, hist_size, which='all', add_naa=False)
xlim(-0, 250)
plt.axvline(nt_th1)


Out[46]:
<matplotlib.lines.Line2D at 0x123eaa470>

In [47]:
Th_nt = np.arange(35, 120)
nt_th = np.zeros(Th_nt.size)
for i, th in enumerate(Th_nt):
    ds_nt = ds_fret.select_bursts(select_bursts.size, th1=th)
    nt_th[i] = (ds_nt.nd[0]  + ds_nt.na[0]).mean() - th

In [48]:
plt.figure()
plot(Th_nt, nt_th)
plt.axvline(nt_th1)


Out[48]:
<matplotlib.lines.Line2D at 0x123ba8630>

In [49]:
nt_mean = nt_th[np.where(Th_nt == nt_th1)][0]
nt_mean


Out[49]:
23.504845411017399

Fret fit

Max position of the Kernel Density Estimation (KDE):


In [50]:
E_pr_fret_kde = bext.fit_bursts_kde_peak(ds_fret, bandwidth=bandwidth, weights='size')
E_fitter = ds_fret.E_fitter

In [51]:
E_fitter.histogram(bins=np.r_[-0.1:1.1:0.03])
E_fitter.fit_histogram(mfit.factory_gaussian(center=0.5))

In [52]:
E_fitter.fit_res[0].params.pretty_print()


Name          Value      Min      Max   Stderr     Vary     Expr
amplitude    0.9646     -inf      inf  0.01487     True     None
center       0.7489       -1        2 0.001494     True     None
fwhm         0.1976     -inf      inf 0.003519    False 2.3548200*sigma
height        4.586     -inf      inf  0.07071    False 0.3989423*amplitude/max(1.e-15, sigma)
sigma       0.08392        0      inf 0.001494     True     None

In [53]:
fig, ax = plt.subplots(1, 2, figsize=(14, 4.5))
mfit.plot_mfit(E_fitter, ax=ax[0])
mfit.plot_mfit(E_fitter, plot_model=False, plot_kde=True, ax=ax[1])
print('%s\nKDE peak %.2f ' % (ds_fret.ph_sel, E_pr_fret_kde*100))
display(E_fitter.params*100)


Dex
KDE peak 75.08 
amplitude center sigma
0 96.4631 74.8896 8.39236

Weighted mean of $E$ of each burst:


In [54]:
ds_fret.fit_E_m(weights='size')


Out[54]:
array([ 0.73748341])

Gaussian fit (no weights):


In [55]:
ds_fret.fit_E_generic(fit_fun=bl.gaussian_fit_hist, bins=np.r_[-0.1:1.1:0.03], weights=None)


Out[55]:
array([ 0.75095791])

Gaussian fit (using burst size as weights):


In [56]:
ds_fret.fit_E_generic(fit_fun=bl.gaussian_fit_hist, bins=np.r_[-0.1:1.1:0.005], weights='size')


Out[56]:
array([ 0.74945588])

In [57]:
E_kde_w = E_fitter.kde_max_pos[0]
E_gauss_w = E_fitter.params.loc[0, 'center']
E_gauss_w_sig = E_fitter.params.loc[0, 'sigma']
E_gauss_w_err = float(E_gauss_w_sig/np.sqrt(ds_fret.num_bursts[0]))
E_gauss_w_fiterr = E_fitter.fit_res[0].params['center'].stderr
E_kde_w, E_gauss_w, E_gauss_w_sig, E_gauss_w_err, E_gauss_w_fiterr


Out[57]:
(0.75080000000002722,
 0.7488956487942355,
 0.08392363462382635,
 0.0024672752649242628,
 0.0014942638721756468)

Stoichiometry fit

Max position of the Kernel Density Estimation (KDE):


In [58]:
S_pr_fret_kde = bext.fit_bursts_kde_peak(ds_fret, burst_data='S', bandwidth=0.03) #weights='size', add_naa=True)
S_fitter = ds_fret.S_fitter

In [59]:
S_fitter.histogram(bins=np.r_[-0.1:1.1:0.03])
S_fitter.fit_histogram(mfit.factory_gaussian(), center=0.5)

In [60]:
fig, ax = plt.subplots(1, 2, figsize=(14, 4.5))
mfit.plot_mfit(S_fitter, ax=ax[0])
mfit.plot_mfit(S_fitter, plot_model=False, plot_kde=True, ax=ax[1])
print('%s\nKDE peak %.2f ' % (ds_fret.ph_sel, S_pr_fret_kde*100))
display(S_fitter.params*100)


Dex
KDE peak 59.74 
amplitude center sigma
0 101.354 58.8508 10.4495

In [61]:
S_kde = S_fitter.kde_max_pos[0]
S_gauss = S_fitter.params.loc[0, 'center']
S_gauss_sig = S_fitter.params.loc[0, 'sigma']
S_gauss_err = float(S_gauss_sig/np.sqrt(ds_fret.num_bursts[0]))
S_gauss_fiterr = S_fitter.fit_res[0].params['center'].stderr
S_kde, S_gauss, S_gauss_sig, S_gauss_err, S_gauss_fiterr


Out[61]:
(0.5974000000000228,
 0.5885080681460617,
 0.10449473146662158,
 0.003072046002513132,
 0.002567440886860109)

The Maximum likelihood fit for a Gaussian population is the mean:


In [62]:
S = ds_fret.S[0]
S_ml_fit = (S.mean(), S.std())
S_ml_fit


Out[62]:
(0.59451372175862938, 0.098505055675144657)

Computing the weighted mean and weighted standard deviation we get:


In [63]:
weights = bl.fret_fit.get_weights(ds_fret.nd[0], ds_fret.na[0], weights='size', naa=ds_fret.naa[0], gamma=1.)
S_mean = np.dot(weights, S)/weights.sum()
S_std_dev = np.sqrt(
        np.dot(weights, (S - S_mean)**2)/weights.sum())
S_wmean_fit = [S_mean, S_std_dev]
S_wmean_fit


Out[63]:
[0.58123253668433572, 0.094267783930390966]

Save data to file


In [64]:
sample = data_id

The following string contains the list of variables to be saved. When saving, the order of the variables is preserved.


In [65]:
variables = ('sample n_bursts_all n_bursts_do n_bursts_fret '
             'E_kde_w E_gauss_w E_gauss_w_sig E_gauss_w_err E_gauss_w_fiterr '
             'S_kde S_gauss S_gauss_sig S_gauss_err S_gauss_fiterr '
             'E_pr_do_kde E_pr_do_hsm E_pr_do_gauss nt_mean\n')

This is just a trick to format the different variables:


In [66]:
variables_csv = variables.replace(' ', ',')
fmt_float = '{%s:.6f}'
fmt_int = '{%s:d}'
fmt_str = '{%s}'
fmt_dict = {**{'sample': fmt_str}, 
            **{k: fmt_int for k in variables.split() if k.startswith('n_bursts')}}
var_dict = {name: eval(name) for name in variables.split()}
var_fmt = ', '.join([fmt_dict.get(name, fmt_float) % name for name in variables.split()]) + '\n'
data_str = var_fmt.format(**var_dict)

print(variables_csv)
print(data_str)


sample,n_bursts_all,n_bursts_do,n_bursts_fret,E_kde_w,E_gauss_w,E_gauss_w_sig,E_gauss_w_err,E_gauss_w_fiterr,S_kde,S_gauss,S_gauss_sig,S_gauss_err,S_gauss_fiterr,E_pr_do_kde,E_pr_do_hsm,E_pr_do_gauss,nt_mean

12d, 1692, 486, 1157, 0.750800, 0.748896, 0.083924, 0.002467, 0.001494, 0.597400, 0.588508, 0.104495, 0.003072, 0.002567, 0.099800, 0.098139, 0.102115, 23.504845


In [67]:
# NOTE: The file name should be the notebook name but with .csv extension
with open('results/usALEX-5samples-PR-raw-%s.csv' % ph_sel_name, 'a') as f:
    f.seek(0, 2)
    if f.tell() == 0:
        f.write(variables_csv)
    f.write(data_str)