Executed: Mon Mar 27 11:36:27 2017

Duration: 8 seconds.

usALEX-5samples - Template

This notebook is executed through 8-spots paper analysis. For a direct execution, uncomment the cell below.


In [1]:
ph_sel_name = "None"

In [2]:
data_id = "12d"

In [3]:
# data_id = "7d"

Load software and filenames definitions


In [4]:
from fretbursts import *


 - Optimized (cython) burst search loaded.
 - Optimized (cython) photon counting loaded.
--------------------------------------------------------------
 You are running FRETBursts (version 0.5.9).

 If you use this software please cite the following paper:

   FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET
   Ingargiola et al. (2016). http://dx.doi.org/10.1371/journal.pone.0160716 

--------------------------------------------------------------

In [5]:
init_notebook()
from IPython.display import display

Data folder:


In [6]:
data_dir = './data/singlespot/'

In [7]:
import os
data_dir = os.path.abspath(data_dir) + '/'
assert os.path.exists(data_dir), "Path '%s' does not exist." % data_dir

List of data files:


In [8]:
from glob import glob
file_list = sorted(f for f in glob(data_dir + '*.hdf5') if '_BKG' not in f)
## Selection for POLIMI 2012-11-26 datatset
labels = ['17d', '27d', '7d', '12d', '22d']
files_dict = {lab: fname for lab, fname in zip(labels, file_list)}
files_dict


Out[8]:
{'12d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/007_dsDNA_12d_3nM_green100u_red40u.hdf5',
 '17d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/004_dsDNA_17d_green100u_red40u.hdf5',
 '22d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/008_dsDNA_22d_500pM_green100u_red40u.hdf5',
 '27d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/005_dsDNA_27d_green100u_red40u.hdf5',
 '7d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/006_dsDNA_7d_green100u_red40u.hdf5'}

In [9]:
data_id


Out[9]:
'12d'

Data load

Initial loading of the data:


In [10]:
d = loader.photon_hdf5(filename=files_dict[data_id])

Laser alternation selection

At this point we have only the timestamps and the detector numbers:


In [11]:
d.ph_times_t, d.det_t


Out[11]:
([array([      42190,       56253,       56263, ..., 47999942928,
         47999959323, 48000016759])],
 [array([1, 0, 0, ..., 1, 1, 1], dtype=uint32)])

We need to define some parameters: donor and acceptor ch, excitation period and donor and acceptor excitiations:


In [12]:
d.add(det_donor_accept=(0, 1), alex_period=4000, D_ON=(2850, 580), A_ON=(900, 2580), offset=0)

We should check if everithing is OK with an alternation histogram:


In [13]:
plot_alternation_hist(d)


If the plot looks good we can apply the parameters with:


In [14]:
loader.alex_apply_period(d)


# Total photons (after ALEX selection):   1,642,933
#  D  photons in D+A excitation periods:    404,153
#  A  photons in D+A excitation periods:  1,238,780
# D+A photons in  D  excitation period:   1,043,678
# D+A photons in  A  excitation period:     599,255

Measurements infos

All the measurement data is in the d variable. We can print it:


In [15]:
d


Out[15]:
singlespot_007_dsDNA_12d_3nM_green100u_red40u G1.000

Or check the measurements duration:


In [16]:
d.time_max


Out[16]:
599.99949153749992

Compute background

Compute the background using automatic threshold:


In [17]:
d.calc_bg(bg.exp_fit, time_s=60, tail_min_us='auto', F_bg=1.7)


 - Calculating BG rates ... [DONE]

In [18]:
dplot(d, timetrace_bg)


Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x12366bba8>

In [19]:
d.rate_m, d.rate_dd, d.rate_ad, d.rate_aa


Out[19]:
([1960.0483965382143],
 [406.04619715470801],
 [902.31032918273252],
 [628.25703861394027])

Burst search and selection


In [20]:
d_orig = d
d = bext.burst_search_and_gate(d, m=10, F=7)


Deep copy executed.
Deep copy executed.
Deep copy executed.
 - Performing burst search (verbose=False) ... - Recomputing background limits for Dex ... [DONE]
 - Recomputing background limits for all ... [DONE]
 - Fixing  burst data to refer to ph_times_m ... [DONE]
[DONE]
 - Calculating burst periods ...[DONE]
 - Performing burst search (verbose=False) ... - Recomputing background limits for AexAem ... [DONE]
 - Recomputing background limits for all ... [DONE]
 - Fixing  burst data to refer to ph_times_m ... [DONE]
[DONE]
 - Calculating burst periods ...[DONE]
 - Calculating burst periods ...[DONE]
 - Counting D and A ph and calculating FRET ... 
   - Applying background correction.
   - Applying leakage correction.
   - Applying direct excitation correction.
   [DONE Counting D/A]

In [21]:
assert d.dir_ex == 0
assert d.leakage == 0

In [22]:
print(d.ph_sel)
dplot(d, hist_fret);


AND-gate

In [23]:
# if data_id in ['7d', '27d']:
#     ds = d.select_bursts(select_bursts.size, th1=20)
# else:
#     ds = d.select_bursts(select_bursts.size, th1=30)

In [24]:
ds = d.select_bursts(select_bursts.size, add_naa=False, th1=30)

In [25]:
n_bursts_all = ds.num_bursts[0]

In [26]:
def select_and_plot_ES(fret_sel, do_sel):
    ds_fret= ds.select_bursts(select_bursts.ES, **fret_sel)
    ds_do = ds.select_bursts(select_bursts.ES, **do_sel)
    bpl.plot_ES_selection(ax, **fret_sel)
    bpl.plot_ES_selection(ax, **do_sel)    
    return ds_fret, ds_do

In [27]:
ax = dplot(ds, hist2d_alex, S_max_norm=2, scatter_alpha=0.1)

if data_id == '7d':
    fret_sel = dict(E1=0.60, E2=1.2, S1=0.2, S2=0.9, rect=False)
    do_sel = dict(E1=-0.2, E2=0.5, S1=0.8, S2=2, rect=True)    
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)
    
elif data_id == '12d':
    fret_sel = dict(E1=0.30,E2=1.2,S1=0.131,S2=0.9, rect=False)
    do_sel = dict(E1=-0.4, E2=0.4, S1=0.8, S2=2, rect=False)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)

elif data_id == '17d':
    fret_sel = dict(E1=0.01, E2=0.98, S1=0.14, S2=0.88, rect=False)
    do_sel = dict(E1=-0.4, E2=0.4, S1=0.80, S2=2, rect=False)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)

elif data_id == '22d':
    fret_sel = dict(E1=-0.16, E2=0.6, S1=0.2, S2=0.80, rect=False)
    do_sel = dict(E1=-0.2, E2=0.4, S1=0.85, S2=2, rect=True)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)    

elif data_id == '27d':
    fret_sel = dict(E1=-0.1, E2=0.5, S1=0.2, S2=0.82, rect=False)
    do_sel = dict(E1=-0.2, E2=0.4, S1=0.88, S2=2, rect=True)
    ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)



In [28]:
bandwidth = 0.03

n_bursts_fret = ds_fret.num_bursts[0]
n_bursts_fret


Out[28]:
1104

In [29]:
dplot(ds_fret, hist2d_alex, scatter_alpha=0.1);



In [30]:
nt_th1 = 50

In [31]:
dplot(ds_fret, hist_size, which='all', add_naa=False)
xlim(-0, 250)
plt.axvline(nt_th1)


Out[31]:
<matplotlib.lines.Line2D at 0x12148b2e8>

In [32]:
Th_nt = np.arange(35, 120)
nt_th = np.zeros(Th_nt.size)
for i, th in enumerate(Th_nt):
    ds_nt = ds_fret.select_bursts(select_bursts.size, th1=th)
    nt_th[i] = (ds_nt.nd[0]  + ds_nt.na[0]).mean() - th

In [33]:
plt.figure()
plot(Th_nt, nt_th)
plt.axvline(nt_th1)


Out[33]:
<matplotlib.lines.Line2D at 0x1214bbac8>

In [34]:
nt_mean = nt_th[np.where(Th_nt == nt_th1)][0]
nt_mean


Out[34]:
23.409027678415043

Fret fit

Max position of the Kernel Density Estimation (KDE):


In [35]:
E_pr_fret_kde = bext.fit_bursts_kde_peak(ds_fret, bandwidth=bandwidth, weights='size')
E_fitter = ds_fret.E_fitter

In [36]:
E_fitter.histogram(bins=np.r_[-0.1:1.1:0.03])
E_fitter.fit_histogram(mfit.factory_gaussian(center=0.5))

In [37]:
E_fitter.fit_res[0].params.pretty_print()


Name          Value      Min      Max   Stderr     Vary     Expr
amplitude    0.9587     -inf      inf  0.01677     True     None
center       0.7509       -1        2 0.001636     True     None
fwhm         0.1907     -inf      inf 0.003852    False 2.3548200*sigma
height        4.722     -inf      inf   0.0826    False 0.3989423*amplitude/max(1.e-15, sigma)
sigma       0.08099        0      inf 0.001636     True     None

In [38]:
fig, ax = plt.subplots(1, 2, figsize=(14, 4.5))
mfit.plot_mfit(E_fitter, ax=ax[0])
mfit.plot_mfit(E_fitter, plot_model=False, plot_kde=True, ax=ax[1])
print('%s\nKDE peak %.2f ' % (ds_fret.ph_sel, E_pr_fret_kde*100))
display(E_fitter.params*100)


AND-gate
KDE peak 75.24 
amplitude center sigma
0 95.8669 75.0899 8.09896

In [39]:
# ds_fret.add(E_fitter = E_fitter)
# dplot(ds_fret, hist_fret_kde, weights='size', bins=np.r_[-0.2:1.2:bandwidth], bandwidth=bandwidth);
# plt.axvline(E_pr_fret_kde, ls='--', color='r')
# print(ds_fret.ph_sel, E_pr_fret_kde)

Weighted mean of $E$ of each burst:


In [40]:
ds_fret.fit_E_m(weights='size')


Out[40]:
array([ 0.73871478])

Gaussian fit (no weights):


In [41]:
ds_fret.fit_E_generic(fit_fun=bl.gaussian_fit_hist, bins=np.r_[-0.1:1.1:0.03], weights=None)


Out[41]:
array([ 0.75309605])

Gaussian fit (using burst size as weights):


In [42]:
ds_fret.fit_E_generic(fit_fun=bl.gaussian_fit_hist, bins=np.r_[-0.1:1.1:0.005], weights='size')


Out[42]:
array([ 0.75109703])

In [43]:
E_kde_w = E_fitter.kde_max_pos[0]
E_gauss_w = E_fitter.params.loc[0, 'center']
E_gauss_w_sig = E_fitter.params.loc[0, 'sigma']
E_gauss_w_err = float(E_gauss_w_sig/np.sqrt(ds_fret.num_bursts[0]))
E_gauss_w_fiterr = E_fitter.fit_res[0].params['center'].stderr
E_kde_w, E_gauss_w, E_gauss_w_sig, E_gauss_w_err, E_gauss_w_fiterr


Out[43]:
(0.75240000000002727,
 0.7508985959655117,
 0.08098955014969245,
 0.002437499021450853,
 0.0016358806005011262)

Stoichiometry fit

Max position of the Kernel Density Estimation (KDE):


In [44]:
S_pr_fret_kde = bext.fit_bursts_kde_peak(ds_fret, burst_data='S', bandwidth=0.03) #weights='size', add_naa=True)
S_fitter = ds_fret.S_fitter

In [45]:
S_fitter.histogram(bins=np.r_[-0.1:1.1:0.03])
S_fitter.fit_histogram(mfit.factory_gaussian(), center=0.5)

In [46]:
fig, ax = plt.subplots(1, 2, figsize=(14, 4.5))
mfit.plot_mfit(S_fitter, ax=ax[0])
mfit.plot_mfit(S_fitter, plot_model=False, plot_kde=True, ax=ax[1])
print('%s\nKDE peak %.2f ' % (ds_fret.ph_sel, S_pr_fret_kde*100))
display(S_fitter.params*100)


AND-gate
KDE peak 59.20 
amplitude center sigma
0 101.385 58.2839 10.0966

In [47]:
S_kde = S_fitter.kde_max_pos[0]
S_gauss = S_fitter.params.loc[0, 'center']
S_gauss_sig = S_fitter.params.loc[0, 'sigma']
S_gauss_err = float(S_gauss_sig/np.sqrt(ds_fret.num_bursts[0]))
S_gauss_fiterr = S_fitter.fit_res[0].params['center'].stderr
S_kde, S_gauss, S_gauss_sig, S_gauss_err, S_gauss_fiterr


Out[47]:
(0.59200000000002273,
 0.5828386219195598,
 0.10096634940859528,
 0.0030387300266273977,
 0.0023176684447780357)

The Maximum likelihood fit for a Gaussian population is the mean:


In [48]:
S = ds_fret.S[0]
S_ml_fit = (S.mean(), S.std())
S_ml_fit


Out[48]:
(0.58740710470221913, 0.094979183072068152)

Computing the weighted mean and weighted standard deviation we get:


In [49]:
weights = bl.fret_fit.get_weights(ds_fret.nd[0], ds_fret.na[0], weights='size', naa=ds_fret.naa[0], gamma=1.)
S_mean = np.dot(weights, S)/weights.sum()
S_std_dev = np.sqrt(
        np.dot(weights, (S - S_mean)**2)/weights.sum())
S_wmean_fit = [S_mean, S_std_dev]
S_wmean_fit


Out[49]:
[0.5758687665856923, 0.091464291072808304]

Save data to file


In [50]:
sample = data_id

The following string contains the list of variables to be saved. When saving, the order of the variables is preserved.


In [51]:
variables = ('sample n_bursts_all n_bursts_fret '
             'E_kde_w E_gauss_w E_gauss_w_sig E_gauss_w_err E_gauss_w_fiterr '
             'S_kde S_gauss S_gauss_sig S_gauss_err S_gauss_fiterr '
             'nt_mean\n')

This is just a trick to format the different variables:


In [52]:
variables_csv = variables.replace(' ', ',')
fmt_float = '{%s:.6f}'
fmt_int = '{%s:d}'
fmt_str = '{%s}'
fmt_dict = {**{'sample': fmt_str}, 
            **{k: fmt_int for k in variables.split() if k.startswith('n_bursts')}}
var_dict = {name: eval(name) for name in variables.split()}
var_fmt = ', '.join([fmt_dict.get(name, fmt_float) % name for name in variables.split()]) + '\n'
data_str = var_fmt.format(**var_dict)

print(variables_csv)
print(data_str)


sample,n_bursts_all,n_bursts_fret,E_kde_w,E_gauss_w,E_gauss_w_sig,E_gauss_w_err,E_gauss_w_fiterr,S_kde,S_gauss,S_gauss_sig,S_gauss_err,S_gauss_fiterr,nt_mean

12d, 1130, 1104, 0.752400, 0.750899, 0.080990, 0.002437, 0.001636, 0.592000, 0.582839, 0.100966, 0.003039, 0.002318, 23.409028


In [53]:
# NOTE: The file name should be the notebook name but with .csv extension
with open('results/usALEX-5samples-PR-raw-AND-gate.csv', 'a') as f:
    f.seek(0, 2)
    if f.tell() == 0:
        f.write(variables_csv)
    f.write(data_str)