Title: Parallel Processing
Slug: parallel_processing
Summary: Lightweight Parallel Processing in Python.
Date: 2016-01-23 12:00
Category: Python
Tags: Basics
Authors: Chris Albon
This tutorial is inspired by Chris Kiehl's great post on multiprocessing.
In [1]:
    
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
    
In [2]:
    
# Create a list of some data
data = range(29999)
    
In [3]:
    
# Create a function that takes a data point
def some_function(datum):
    # and returns the datum raised to the power of itself
    return datum**datum
    
In [4]:
    
%%time
# Create an empty for the results
results = [] 
# For each value in the data
for datum in data:
    # Append the output of the function when applied to that datum
    results.append(some_function(datum))
    
    
In [5]:
    
# Create a pool of workers equaling cores on the machine
pool = ThreadPool()
    
In [6]:
    
%%time
# Apply (map) some_function to the data using the pool of workers
results = pool.map(some_function, data)
# Close the pool
pool.close() 
# Combine the results of the workers
pool.join()