Title: Deleting Missing Values
Slug: deleting_missing_values
Summary: How to delete missing values.
Date: 2017-09-02 12:00
Category: Machine Learning
Tags: Preprocessing Structured Data
Authors: Chris Albon
In [1]:
    
# Load library
import numpy as np
import pandas as pd
    
In [2]:
    
# Create feature matrix
X = np.array([[1, 2], 
              [6, 3], 
              [8, 4], 
              [9, 5], 
              [np.nan, 4]])
    
In [3]:
    
# Remove observations with missing values
X[~np.isnan(X).any(axis=1)]
    
    Out[3]:
In [4]:
    
# Load data as a data frame
df = pd.DataFrame(X, columns=['feature_1', 'feature_2'])
# Remove observations with missing values
df.dropna()
    
    Out[4]: