In [1]:
from PIL import Image
import numpy as np
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
from sklearn import datasets, tree
from sklearn import ensemble
matplotlib.style.use('bmh')
matplotlib.rcParams['figure.figsize']=(10,7)
In [2]:
import gzip
import pickle
with gzip.open('../Week02/mnist.pkl.gz', 'rb') as f:
train_set, validation_set, test_set = pickle.load(f, encoding='latin1')
train_X, train_y = train_set
test_X, test_y = test_set
In [3]:
train_X=train_X.reshape(-1, 28,28)[:,::2,::2].reshape(-1, 14*14)
test_X=test_X.reshape(-1, 28,28)[:,::2,::2].reshape(-1, 14*14)
In [4]:
clf = ensemble.AdaBoostClassifier(tree.DecisionTreeClassifier(max_depth=10),
n_estimators=50,
learning_rate=1,
algorithm="SAMME.R")
In [5]:
%%timeit -n 1 -r 1
clf.fit(train_X, train_y)
In [6]:
%%timeit -n 1 -r 1
print(np.mean(clf.predict(train_X) == train_y))
In [7]:
%%timeit -n 1 -r 1
print(np.mean(clf.predict(test_X) == test_y))
In [ ]: