Kaggle自行车租赁预测比赛

Kaggle中最有名的例子是泰坦尼克号之灾的例子,因为数据量小,同时趣味性很浓。我之前写过一篇博客逻辑回归应用之Kaggle泰坦尼克之灾,介绍了一下逻辑斯特回归在这样一个分类问题上的应用,以及,一个完整的机器学习是什么样的。

这里的Kaggle自行车租赁预测比赛也同样是一个很有趣的问题,之所以要把它单拎出来,讲一讲,2个原因和泰坦尼克号之灾是一样的,另外一个原因是,这是一个连续值预测的问题,也就是我们说的机器学习中的回归问题,本着各类问题我们都要覆盖一下的标准,咱们一起来看看这个问题。

这是一个城市自行车租赁系统,提供的数据为2年内华盛顿按小时记录的自行车租赁数据,其中训练集由每个月的前19天组成,测试集由20号之后的时间组成(需要我们自己去预测)。

数据读取与预分析

老朋友最靠谱,最好用,继续用python中数据分析有着不可撼动统治地位的pandas包
numpy是科学计算包,也是肯定要用的。


In [30]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline


/Library/Python/2.7/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.
  "`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)

In [2]:
df_train = pd.read_csv('kaggle_bike_competition_train.csv',header = 0)

读到内存里了,先拿出来亮亮相,我们一起来瞄一眼前10行


In [3]:
df_train.head(10)


Out[3]:
datetime season holiday workingday weather temp atemp humidity windspeed casual registered count
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395 81 0.0000 3 13 16
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635 80 0.0000 8 32 40
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635 80 0.0000 5 27 32
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395 75 0.0000 3 10 13
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395 75 0.0000 0 1 1
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880 75 6.0032 0 1 1
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635 80 0.0000 2 0 2
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880 86 0.0000 1 2 3
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395 75 0.0000 1 7 8
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425 76 0.0000 8 6 14

就喜欢这种顺畅的excel表格形式,常年懒癌晚期,于是乎我们让pandas自己告诉我们一些信息
字段的名字和类型咱们总得了解一下吧


In [4]:
df_train.dtypes


Out[4]:
datetime       object
season          int64
holiday         int64
workingday      int64
weather         int64
temp          float64
atemp         float64
humidity        int64
windspeed     float64
casual          int64
registered      int64
count           int64
dtype: object

接下来咱们总得了解一下我们的任务有多艰巨(数据量有多大)吧


In [5]:
#让它告诉我们形状
df_train.shape


Out[5]:
(10886, 12)

我们总结一下,总共有10886行,同时每一行有12列不同的信息
那个,记得我们说过的脏数据问题吧,所以呢,我们看看有没有缺省的字段


In [6]:
df_train.count()


Out[6]:
datetime      10886
season        10886
holiday       10886
workingday    10886
weather       10886
temp          10886
atemp         10886
humidity      10886
windspeed     10886
casual        10886
registered    10886
count         10886
dtype: int64

→_→可见万恶的资本主义郭嘉的记录系统多么严谨完善,居然就没有缺省值


In [7]:
type(df_train.datetime)


Out[7]:
pandas.core.series.Series

咱们第一个来处理时间,因为它包含的信息总是非常多的,毕竟变化都是随着时间发生的嘛


In [9]:
# 把月、日、和 小时单独拎出来,放到3列中
df_train['month'] = pd.DatetimeIndex(df_train.datetime).month
df_train['day'] = pd.DatetimeIndex(df_train.datetime).dayofweek
df_train['hour'] = pd.DatetimeIndex(df_train.datetime).hour

In [10]:
# 再看
df_train.head(10)


Out[10]:
datetime season holiday workingday weather temp atemp humidity windspeed casual registered count month day hour
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395 81 0.0000 3 13 16 1 5 0
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635 80 0.0000 8 32 40 1 5 1
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635 80 0.0000 5 27 32 1 5 2
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395 75 0.0000 3 10 13 1 5 3
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395 75 0.0000 0 1 1 1 5 4
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880 75 6.0032 0 1 1 1 5 5
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635 80 0.0000 2 0 2 1 5 6
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880 86 0.0000 1 2 3 1 5 7
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395 75 0.0000 1 7 8 1 5 8
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425 76 0.0000 8 6 14 1 5 9

那个,既然时间大串已经被我们处理过了,那这个字段放着太占地方,干脆就不要了吧
先上一个粗暴的版本,咱们把注册租户和未注册租户也先丢掉,回头咱们再看另外一种处理方式


In [11]:
# 那个,保险起见,咱们还是先存一下吧
df_train_origin = df_train
# 抛掉不要的字段
df_train = df_train.drop(['datetime','casual','registered'], axis = 1)

In [12]:
# 看一眼
df_train.head(5)


Out[12]:
season holiday workingday weather temp atemp humidity windspeed count month day hour
0 1 0 0 1 9.84 14.395 81 0.0 16 1 5 0
1 1 0 0 1 9.02 13.635 80 0.0 40 1 5 1
2 1 0 0 1 9.02 13.635 80 0.0 32 1 5 2
3 1 0 0 1 9.84 14.395 75 0.0 13 1 5 3
4 1 0 0 1 9.84 14.395 75 0.0 1 1 5 4

赞,干净多了


In [13]:
df_train.shape


Out[13]:
(10886, 12)

分成2部分:
1. df_train_target:目标,也就是count字段。
2. df_train_data:用于产出特征的数据


In [14]:
df_train_target = df_train['count'].values
df_train_data = df_train.drop(['count'],axis = 1).values
print 'df_train_data shape is ', df_train_data.shape
print 'df_train_target shape is ', df_train_target.shape


df_train_data shape is  (10886, 11)
df_train_target shape is  (10886,)

机器学习算法

下面的过程会让你看到,其实应用机器学习算法的过程,多半是在调参,各种不同的参数会带来不同的结果(比如正则化系数,比如决策树类的算法的树深和棵树,比如距离判定准则等等等等)


In [15]:
from sklearn import linear_model
from sklearn import cross_validation
from sklearn import svm
from sklearn.ensemble import RandomForestRegressor
from sklearn.learning_curve import learning_curve
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import explained_variance_score

数据量不算大,世界那么大,你想去看看,没钱看不成;模型这么多,你尽量试试总可以吧。

咱们依旧会使用交叉验证的方式(交叉验证集约占全部数据的20%)来看看模型的效果,我们会试 支持向量回归/Suport Vector Regression, 岭回归/Ridge Regression 和 随机森林回归/Random Forest Regressor。每个模型会跑3趟看平均的结果。

什么,你说这些模型还没讲,你都不懂?没关系,先练练手试试咯,学会读文档嘛。

支持向量回归
岭回归
随机森林回归


In [16]:
# 总得切分一下数据咯(训练集和测试集)
cv = cross_validation.ShuffleSplit(len(df_train_data), n_iter=3, test_size=0.2,
    random_state=0)

# 各种模型来一圈

print "岭回归"    
for train, test in cv:    
    svc = linear_model.Ridge().fit(df_train_data[train], df_train_target[train])
    print("train score: {0:.3f}, test score: {1:.3f}\n".format(
        svc.score(df_train_data[train], df_train_target[train]), svc.score(df_train_data[test], df_train_target[test])))
    
print "支持向量回归/SVR(kernel='rbf',C=10,gamma=.001)"
for train, test in cv:
    
    svc = svm.SVR(kernel ='rbf', C = 10, gamma = .001).fit(df_train_data[train], df_train_target[train])
    print("train score: {0:.3f}, test score: {1:.3f}\n".format(
        svc.score(df_train_data[train], df_train_target[train]), svc.score(df_train_data[test], df_train_target[test])))
    
print "随机森林回归/Random Forest(n_estimators = 100)"    
for train, test in cv:    
    svc = RandomForestRegressor(n_estimators = 100).fit(df_train_data[train], df_train_target[train])
    print("train score: {0:.3f}, test score: {1:.3f}\n".format(
        svc.score(df_train_data[train], df_train_target[train]), svc.score(df_train_data[test], df_train_target[test])))


岭回归
train score: 0.339, test score: 0.332

train score: 0.330, test score: 0.370

train score: 0.342, test score: 0.320

支持向量回归/SVR(kernel='rbf',C=10,gamma=.001)
train score: 0.417, test score: 0.408

train score: 0.406, test score: 0.452

train score: 0.419, test score: 0.390

随机森林回归/Random Forest(n_estimators = 100)
train score: 0.982, test score: 0.865

train score: 0.981, test score: 0.880

train score: 0.981, test score: 0.870

不出意料,随机森林回归获得了最佳结果。。。

不过,那个,大家有没有想过,也有可能是你的参数设置的不对啊?这个,留给大家自己去试试咯,试完告诉我,哈哈

好多同学问参数咋调啊?我们有一个工具可以帮忙,叫做GridSearch,可以在你喝咖啡的时候,帮你搬搬砖,找找参数


In [17]:
X = df_train_data
y = df_train_target

X_train, X_test, y_train, y_test = cross_validation.train_test_split(
    X, y, test_size=0.2, random_state=0)

tuned_parameters = [{'n_estimators':[10,100,500]}]   
    
scores = ['r2']

for score in scores:
    
    print score
    
    clf = GridSearchCV(RandomForestRegressor(), tuned_parameters, cv=5, scoring=score)
    clf.fit(X_train, y_train)

    print("别!喝!咖!啡!了!最佳参数找到了亲!!:")
    print ""
    #best_estimator_ returns the best estimator chosen by the search
    print(clf.best_estimator_)
    print ""
    print("得分分别是:")
    print ""
    #grid_scores_的返回值:
    #    * a dict of parameter settings
    #    * the mean score over the cross-validation folds 
    #    * the list of scores for each fold
    for params, mean_score, scores in clf.grid_scores_:
        print("%0.3f (+/-%0.03f) for %r"
              % (mean_score, scores.std() / 2, params))
    print ""


r2
别!喝!咖!啡!了!最佳参数找到了亲!!:

RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features='auto', max_leaf_nodes=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           n_estimators=500, n_jobs=1, oob_score=False, random_state=None,
           verbose=0, warm_start=False)

得分分别是:

0.852 (+/-0.006) for {'n_estimators': 10}
0.862 (+/-0.005) for {'n_estimators': 100}
0.863 (+/-0.006) for {'n_estimators': 500}

你看到咯,Grid Search帮你挑参数还是蛮方便的,你也可以大胆放心地在刚才其他的模型上试一把。
而且要看看模型状态是不是,过拟合or欠拟合
依旧是学习曲线


In [18]:
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
    
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()

    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")

    plt.legend(loc="best")
    return plt


title = "Learning Curves (Random Forest, n_estimators = 100)"
cv = cross_validation.ShuffleSplit(df_train_data.shape[0], n_iter=10,test_size=0.2, random_state=0)
estimator = RandomForestRegressor(n_estimators = 100)
plot_learning_curve(estimator, title, X, y, (0.0, 1.01), cv=cv, n_jobs=4)

plt.show()


看出来了吧,训练集和测试集直接间隔那么大,这。。。一定是过拟合了
随机森林这种算法学习能力非常强啦,大家从最上面对比各个模型得分的时候也可以看到,训练集和测试集的得分也是差蛮多的,过拟合还蛮明显。所以,我能说什么呢,你用了核弹去消灭蝗虫,然后土壤也有点长不出植物了
so, 过拟合咱们怎么办来着?你来回答下?忘了?那还不去翻翻ppt


In [25]:
# 尝试一下缓解过拟合,当然,未必成功
print "随机森林回归/Random Forest(n_estimators=200, max_features=0.6, max_depth=15)"
for train, test in cv: 
    svc = RandomForestRegressor(n_estimators = 200, max_features=0.6, max_depth=15).fit(df_train_data[train], df_train_target[train])
    print("train score: {0:.3f}, test score: {1:.3f}\n".format(
        svc.score(df_train_data[train], df_train_target[train]), svc.score(df_train_data[test], df_train_target[test])))


随机森林回归/Random Forest(n_estimators=200, max_features=0.3)
train score: 0.965, test score: 0.867

train score: 0.966, test score: 0.885

train score: 0.966, test score: 0.875

train score: 0.965, test score: 0.876

train score: 0.967, test score: 0.870

train score: 0.965, test score: 0.872

train score: 0.967, test score: 0.862

train score: 0.966, test score: 0.875

train score: 0.966, test score: 0.871

train score: 0.966, test score: 0.868

不知道大家有没有印象,我们之前说了,我们把“注册用户”和“未注册用户”加一块儿做的预测。
另外一个思路是,咱们可以试着分开这两部分,分别预测一下,再求和嘛。
话说,特征和对应的“注册”和“未注册”用户都有了,这个部分就当做作业吧,大家试试。


In [26]:
# 看你们自己的咯
df_train_registered = df_train_origin.drop(['datetime','casual','count'], axis = 1)
df_train_casual = df_train_origin.drop(['datetime','count','registered'], axis = 1)

In [27]:
df_train_registered.head()


Out[27]:
season holiday workingday weather temp atemp humidity windspeed registered month day hour
0 1 0 0 1 9.84 14.395 81 0.0 13 1 5 0
1 1 0 0 1 9.02 13.635 80 0.0 32 1 5 1
2 1 0 0 1 9.02 13.635 80 0.0 27 1 5 2
3 1 0 0 1 9.84 14.395 75 0.0 10 1 5 3
4 1 0 0 1 9.84 14.395 75 0.0 1 1 5 4

In [29]:
df_train_casual.head()


Out[29]:
season holiday workingday weather temp atemp humidity windspeed casual month day hour
0 1 0 0 1 9.84 14.395 81 0.0 3 1 5 0
1 1 0 0 1 9.02 13.635 80 0.0 8 1 5 1
2 1 0 0 1 9.02 13.635 80 0.0 5 1 5 2
3 1 0 0 1 9.84 14.395 75 0.0 3 1 5 3
4 1 0 0 1 9.84 14.395 75 0.0 0 1 5 4

听说有同学问,为啥这个例子中没有数据分析,咳咳,那好吧,补充一下。那个,分析得到的结果,你们观察观察,看看有什么角度可以帮忙改善一下特征或者模型,看好你们^_^


In [40]:
# 风速
df_train_origin.groupby('windspeed').mean().plot(y='count', marker='o')
plt.show()



In [41]:
# 湿度
df_train_origin.groupby('humidity').mean().plot(y='count', marker='o')
plt.show()



In [42]:
# 温度
df_train_origin.groupby('temp').mean().plot(y='count', marker='o')
plt.show()



In [46]:
#温度湿度变化
df_train_origin.plot(x='temp', y='humidity', kind='scatter')
plt.show()



In [35]:
# scatter一下各个维度
fig, axs = plt.subplots(2, 3, sharey=True)
df_train_origin.plot(kind='scatter', x='temp', y='count', ax=axs[0, 0], figsize=(16, 8), color='magenta')
df_train_origin.plot(kind='scatter', x='atemp', y='count', ax=axs[0, 1], color='cyan')
df_train_origin.plot(kind='scatter', x='humidity', y='count', ax=axs[0, 2], color='red')
df_train_origin.plot(kind='scatter', x='windspeed', y='count', ax=axs[1, 0], color='yellow')
df_train_origin.plot(kind='scatter', x='month', y='count', ax=axs[1, 1], color='blue')
df_train_origin.plot(kind='scatter', x='hour', y='count', ax=axs[1, 2], color='green')


Out[35]:
<matplotlib.axes._subplots.AxesSubplot at 0x11ad48090>

In [37]:
sns.pairplot(df_train_origin[["temp", "month", "humidity", "count"]], hue="count")


Out[37]:
<seaborn.axisgrid.PairGrid at 0x11beecc90>

In [48]:
# 来看看相关度咯
corr = df_train_origin[['temp','weather','windspeed','day', 'month', 'hour','count']].corr()
corr


Out[48]:
temp weather windspeed day month hour count
temp 1.000000 -0.055035 -0.017852 -0.038466 0.257589 0.145430 0.394454
weather -0.055035 1.000000 0.007261 -0.047692 0.012144 -0.022740 -0.128655
windspeed -0.017852 0.007261 1.000000 -0.024804 -0.150192 0.146631 0.101369
day -0.038466 -0.047692 -0.024804 1.000000 -0.002266 -0.002925 -0.002283
month 0.257589 0.012144 -0.150192 -0.002266 1.000000 -0.006818 0.166862
hour 0.145430 -0.022740 0.146631 -0.002925 -0.006818 1.000000 0.400601
count 0.394454 -0.128655 0.101369 -0.002283 0.166862 0.400601 1.000000

In [52]:
# 用颜色深浅来表示相关度
plt.figure()
plt.matshow(corr)
plt.colorbar()
plt.show()


<matplotlib.figure.Figure at 0x14716d410>

In [ ]: