Convolutional Sentiment Classifier

In this notebook, we build a convolutional neural net to classify IMDB movie reviews by their sentiment.

Load dependencies


In [1]:
import keras
from keras.datasets import imdb
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding
from keras.layers import SpatialDropout1D, Conv1D, GlobalMaxPooling1D # new! 
from keras.callbacks import ModelCheckpoint
import os
from sklearn.metrics import roc_auc_score 
import matplotlib.pyplot as plt 
%matplotlib inline


Using TensorFlow backend.

Set hyperparameters


In [2]:
# output directory name:
output_dir = 'model_output/conv'

# training:
epochs = 4
batch_size = 128

# vector-space embedding: 
n_dim = 64
n_unique_words = 5000 
max_review_length = 400
pad_type = trunc_type = 'pre'
drop_embed = 0.2 # new!

# convolutional layer architecture:
n_conv = 256 # filters, a.k.a. kernels
k_conv = 3 # kernel length

# dense layer architecture: 
n_dense = 256
dropout = 0.2

Load data


In [3]:
(x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words) # removed n_words_to_skip

Preprocess data


In [4]:
x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0)
x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0)

Design neural network architecture


In [5]:
model = Sequential()
model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) 
model.add(SpatialDropout1D(drop_embed))
model.add(Conv1D(n_conv, k_conv, activation='relu'))
# model.add(Conv1D(n_conv, k_conv, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(n_dense, activation='relu'))
model.add(Dropout(dropout))
model.add(Dense(1, activation='sigmoid'))

In [6]:
model.summary()


_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_1 (Embedding)      (None, 400, 64)           320000    
_________________________________________________________________
spatial_dropout1d_1 (Spatial (None, 400, 64)           0         
_________________________________________________________________
conv1d_1 (Conv1D)            (None, 398, 256)          49408     
_________________________________________________________________
global_max_pooling1d_1 (Glob (None, 256)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 256)               65792     
_________________________________________________________________
dropout_1 (Dropout)          (None, 256)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 1)                 257       
=================================================================
Total params: 435,457
Trainable params: 435,457
Non-trainable params: 0
_________________________________________________________________

Configure model


In [7]:
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

In [8]:
modelcheckpoint = ModelCheckpoint(filepath=output_dir+"/weights.{epoch:02d}.hdf5")
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

Train!


In [9]:
# 89.1% validation accuracy in epoch 2
# ...with second convolutional layer is essentially the same at 89.0%
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint])


Train on 25000 samples, validate on 25000 samples
Epoch 1/4
25000/25000 [==============================] - 45s - loss: 0.4800 - acc: 0.7472 - val_loss: 0.2931 - val_acc: 0.8754
Epoch 2/4
25000/25000 [==============================] - 3s - loss: 0.2502 - acc: 0.8974 - val_loss: 0.2602 - val_acc: 0.8918
Epoch 3/4
25000/25000 [==============================] - 3s - loss: 0.1719 - acc: 0.9357 - val_loss: 0.2811 - val_acc: 0.8848
Epoch 4/4
25000/25000 [==============================] - 3s - loss: 0.1147 - acc: 0.9609 - val_loss: 0.3094 - val_acc: 0.8834
Out[9]:
<keras.callbacks.History at 0x7f99e7711f60>

Evaluate


In [10]:
model.load_weights(output_dir+"/weights.01.hdf5") # zero-indexed

In [11]:
y_hat = model.predict_proba(x_valid)


24544/25000 [============================>.] - ETA: 0s

In [12]:
plt.hist(y_hat)
_ = plt.axvline(x=0.5, color='orange')



In [13]:
"{:0.2f}".format(roc_auc_score(y_valid, y_hat)*100.0)


Out[13]:
'95.97'

In [ ]: