Shallow Neural Network in Keras

Build a shallow neural network to classify MNIST digits

Set seed for reproducibility


In [ ]:
import numpy as np
np.random.seed(42)

Load dependencies


In [ ]:
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD

Load data


In [ ]:
(X_train, y_train), (X_test, y_test) = mnist.load_data()

In [ ]:
X_train.shape

In [ ]:
y_train.shape

In [ ]:
y_train[0:99]

In [ ]:
X_test.shape

In [ ]:
X_test[0]

In [ ]:
y_test.shape

In [ ]:
y_test[0]

Preprocess data


In [ ]:
X_train = X_train.reshape(60000, 784).astype('float32')
X_test = X_test.reshape(10000, 784).astype('float32')

In [ ]:
X_train /= 255
X_test /= 255

In [ ]:
X_test[0]

In [ ]:
n_classes = 10
y_train = keras.utils.to_categorical(y_train, n_classes)
y_test = keras.utils.to_categorical(y_test, n_classes)

In [ ]:
y_test[0]

Design neural network architecture


In [ ]:
# add architecture here

In [ ]:
model.summary()

In [ ]:
(64*784)

In [ ]:
(64*784)+64

In [ ]:
(10*64)+10

Configure model


In [ ]:
# compile model here

Train!


In [ ]:
# train model here

In [ ]:
model.evaluate(X_test, y_test)

In [ ]: