In [1]:
import theano
import theano.tensor as T
In [33]:
k = T.iscalar('K')
a = T.vector('A')
i = T.vector('A')
In [34]:
result, updates = theano.scan(fn=lambda pre , k : pre*a ,
outputs_info = i,
non_sequences=a,
n_steps = k
)
In [35]:
print result
print updates
In [36]:
final_result = result[-1]
In [37]:
power = theano.function(inputs=[a,k,i],outputs=[final_result],updates=updates)
In [38]:
print(power(range(10),2,[10]*10))
In [ ]: