Tensor Transformations


In [1]:
from __future__ import print_function
import tensorflow as tf
import numpy as np

In [2]:
from datetime import date
date.today()


Out[2]:
datetime.date(2017, 2, 22)

In [3]:
author = "kyubyong. https://github.com/Kyubyong/tensorflow-exercises"

In [4]:
tf.__version__


Out[4]:
'1.0.0'

In [5]:
np.__version__


Out[5]:
'1.12.0'

In [6]:
sess = tf.InteractiveSession()

NOTE on notation

  • _x, _y, _z, ...: NumPy 0-d or 1-d arrays
  • _X, _Y, _Z, ...: NumPy 2-d or higer dimensional arrays
  • x, y, z, ...: 0-d or 1-d tensors
  • X, Y, Z, ...: 2-d or higher dimensional tensors

Casting

Q1. Let X be a tensor of [["1.1", "2.2"], ["3.3", "4.4"]]. Convert the datatype of X to float32.


In [7]:



[[ 1.10000002  2.20000005]
 [ 3.29999995  4.4000001 ]]

Q2. Let X be a tensor [[1, 2], [3, 4]] of int32. Convert the data type of X to float64.


In [8]:



[[ 1.  2.]
 [ 3.  4.]]

Q3. Let X be a tensor [[1, 2], [3, 4]] of int32. Convert the data type of X to float32.


In [9]:



[[ 1.  2.]
 [ 3.  4.]]

Q4. Let X be a tensor [[1, 2], [3, 4]] of float32. Convert the data type of X to int32.


In [10]:



[[1 2]
 [3 4]]

Q5. Let X be a tensor [[1, 2], [3, 4]] of float32. Convert the data type of X to int64.


In [11]:



[[1 2]
 [3 4]]

Shapes and Shaping

Q6. Let X be a tensor of [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]. Create a tensor representing the shape of X.


In [12]:



[3 2 2]

Q7. Let X be a tensor of [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]) and y be a tensor [10, 20]. Create a list of tensors representing the shape of X and y.


In [13]:



[3 2 2] [2]

Q8. Let X be a tensor of [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]. Create a tensor representing the size (=total number of elements) of X.


In [14]:



12

Q9. Let X be a tensor of [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]. Create a tensor representing the rank (=number of dimensions) of X.


In [15]:



3

Q10. Let X be tf.ones([10, 10, 3]). Reshape X so that the size of the second dimension equals 150.


In [16]:



[[ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.]]

Q11. Let X be tf.ones([10, 10, 1, 1]). Remove all the dimensions of size 1 in X.


In [17]:



(10, 10)

Q12. Let X be tf.ones([10, 10, 1, 1]). Remove only the third dimension in X.


In [18]:



(10, 10, 1)

Q13. Let X be tf.ones([10, 10]). Add a dimension of 1 at the end of X.


In [19]:



(10, 10, 1)

Slicing and Joining

Q14. Let X be a tensor
[[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]].
Extract the [[[3, 3, 3], [5, 5, 5]] from X.


In [20]:



[[[3 3 3]]

 [[5 5 5]]]

Q15. Let X be a tensor of
[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[ 9 10]].
Extract the [[1, 2], [5, 6], [9, 10]]] from X.


In [21]:



[[ 1  2]
 [ 5  6]
 [ 9 10]]

Q16. Let X be a tensor of
[[ 1 2 3 4 5]
[ 6 7 8 9 10]].
Split X into 5 same-sized tensors along the second dimension.


In [22]:



[array([[1],
       [6]]), array([[2],
       [7]]), array([[3],
       [8]]), array([[4],
       [9]]), array([[ 5],
       [10]])]

Q17. Lex X be a tensor
[[ 1 2 3]
[ 4 5 6].
Create a tensor looking like
[[ 1 2 3 1 2 3 1 2 3 ]
[ 4 5 6 4 5 6 4 5 6 ]].


In [23]:



[[1 2 3 1 2 3 1 2 3]
 [4 5 6 4 5 6 4 5 6]]

Q18. Lex X be a tensor
[[ 1 2 3]
[ 4 5 6].
Pad 2 0's before the first dimension, 3 0's after the second dimension.


In [24]:



[[0 0 0 0 0 0]
 [0 0 0 0 0 0]
 [1 2 3 0 0 0]
 [4 5 6 0 0 0]]

Q19. Lex X be a tensor
[[ 1 2 3]
[ 4 5 6].
and Y be a tensor
[[ 7 8 9]
[10 11 12]].
Concatenate X and Y so that the new tensor looks like [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]].


In [25]:



[[ 1  2  3  7  8  9]
 [ 4  5  6 10 11 12]]

Q20. Let x, y, and z be tensors [1, 4], [2, 5], and [3, 6], respectively.
Create a single tensor from these such that it looks [[1, 2, 3], [4, 5, 6]].


In [26]:



[[1 2 3]
 [4 5 6]]

Q21. Let X be a tensor [[1, 2, 3], [4, 5, 6]]. Convert X into Y such that Y looks like [[1, 4], [2, 5], [3, 6]].


In [27]:



[array([1, 4]), array([2, 5]), array([3, 6])]

Q22. Given X below, reverse the sequence along the second axis except the zero-paddings.


In [28]:
X = tf.constant(
[[[0, 0, 1],
  [0, 1, 0],
  [0, 0, 0]],
 
 [[0, 0, 1],
  [0, 1, 0],
  [1, 0, 0]]])


Out[28]:
array([[[0, 1, 0],
        [0, 0, 1],
        [0, 0, 0]],

       [[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]]])

Q23. Given X below, reverse the last dimension.


In [29]:
_X = np.arange(1, 1*2*3*4 + 1).reshape((1, 2, 3, 4))
X = tf.convert_to_tensor(_X)


[[[[ 4  3  2  1]
   [ 8  7  6  5]
   [12 11 10  9]]

  [[16 15 14 13]
   [20 19 18 17]
   [24 23 22 21]]]]

Q24. Given X below, permute its dimensions such that the new tensor has shape (3, 1, 2).


In [30]:
_X = np.ones((1, 2, 3))
X = tf.convert_to_tensor(_X)


(3, 1, 2)

Q25. Given X, below, get the first, and third rows.


In [31]:
_X = np.arange(1, 10).reshape((3, 3))
X = tf.convert_to_tensor(_X)


[[1 2 3]
 [7 8 9]]

Q26. Given X below, get the elements 5 and 7.


In [32]:
_X = np.arange(1, 10).reshape((3, 3))
X = tf.convert_to_tensor(_X)


[5 7]

Q27. Let x be a tensor [2, 2, 1, 5, 4, 5, 1, 2, 3]. Get the tensors of unique elements and their counts.


In [33]:



[2 1 5 4 3] [3 2 2 1 1]

Q28. Let x be a tensor [1, 2, 3, 4, 5]. Divide the elements of x into a list of tensors that looks like [[3, 5], [1], [2, 4]].


In [34]:



[array([3, 5]), array([1]), array([2, 4])]

Q29. Let X be a tensor [[7, 8], [5, 6]] and Y be a tensor [[1, 2], [3, 4]]. Create a single tensor looking like [[1, 2], [3, 4], [5, 6], [7, 8]].


In [35]:



[[1 2]
 [3 4]
 [5 6]
 [7 8]]

Q30. Let x be a tensor [0, 1, 2, 3] and y be a tensor [True, False, False, True].
Apply mask y to x.


In [36]:



[0 3]

Q31. Let x be a tensor [[0, 5, 3], [4, 2, 1]]. Convert X into one-hot.


In [37]:



[[ 1.  0.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.  0.]
 [ 0.  0.  1.  0.  0.  0.]
 [ 0.  0.  0.  1.  0.  0.]]

In [ ]: