This tutorial will describe how to setup high-performance simulations with TFF in a variety of common scenarios.
TODO(b/134543154): Populate the content, some of the things to cover here:
Now, let's start by loading the MNIST example from the TFF website, and declaring the Python function that will run a small experiment loop over a group of 10 clients.
In [1]:
#@test {"skip": true}
!pip install --quiet --upgrade tensorflow_federated
In [2]:
import collections
import time
import tensorflow as tf
import tensorflow_federated as tff
source, _ = tff.simulation.datasets.emnist.load_data()
def map_fn(example):
return collections.OrderedDict(
x=tf.reshape(example['pixels'], [-1, 784]), y=example['label'])
def client_data(n):
ds = source.create_tf_dataset_for_client(source.client_ids[n])
return ds.repeat(10).shuffle(500).batch(20).map(map_fn)
train_data = [client_data(n) for n in range(10)]
element_spec = train_data[0].element_spec
def model_fn():
model = tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(784,)),
tf.keras.layers.Dense(units=10, kernel_initializer='zeros'),
tf.keras.layers.Softmax(),
])
return tff.learning.from_keras_model(
model,
input_spec=element_spec,
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
trainer = tff.learning.build_federated_averaging_process(
model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02))
def evaluate(num_rounds=10):
state = trainer.initialize()
for _ in range(num_rounds):
t1 = time.time()
state, metrics = trainer.next(state, train_data)
t2 = time.time()
print('metrics {m}, round time {t:.2f} seconds'.format(
m=metrics, t=t2 - t1))
In [3]:
evaluate()