In [0]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Partial Differential Equations

TensorFlow isn't just for machine learning. Here you will use TensorFlow to simulate the behavior of a partial differential equation. You'll simulate the surface of square pond as a few raindrops land on it.

Basic setup

A few imports you'll need.


In [0]:
#Import libraries for simulation
import tensorflow as tf
assert tf.__version__.startswith('2')
import numpy as np

#Imports for visualization
import PIL.Image
from io import BytesIO
from IPython.display import clear_output, Image, display

A function for displaying the state of the pond's surface as an image.


In [0]:
def DisplayArray(a, fmt='jpeg', rng=[0,1]):
  """Display an array as a picture."""
  a = (a - rng[0])/float(rng[1] - rng[0])*255
  a = np.uint8(np.clip(a, 0, 255))
  f = BytesIO()
  PIL.Image.fromarray(a).save(f, fmt)
  clear_output(wait = True)
  display(Image(data=f.getvalue()))

Computational convenience functions


In [0]:
@tf.function
def make_kernel(a):
  """Transform a 2D array into a convolution kernel"""
  a = np.asarray(a)
  a = a.reshape(list(a.shape) + [1,1])
  return tf.constant(a, dtype=1)

@tf.function
def simple_conv(x, k):
  """A simplified 2D convolution operation"""
  x = tf.expand_dims(tf.expand_dims(x, 0), -1)
  y = tf.nn.depthwise_conv2d(input=x, filter=k, strides=[1, 1, 1, 1], padding='SAME')
  return y[0, :, :, 0]

@tf.function
def laplace(x):
  """Compute the 2D laplacian of an array"""
  laplace_k = make_kernel([[0.5, 1.0, 0.5],
                           [1.0, -6., 1.0],
                           [0.5, 1.0, 0.5]])
  return simple_conv(x, laplace_k)

Define the PDE

Your pond is a perfect 500 x 500 square, as is the case for most ponds found in nature.


In [0]:
N = 500

Here you create your pond and hit it with some rain drops.


In [0]:
# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype=np.float32)
ut_init = np.zeros([N, N], dtype=np.float32)

# Some rain drops hit a pond at random points
for n in range(40):
  a,b = np.random.randint(0, N, 2)
  u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])

Now let's specify the details of the differential equation.


In [0]:
# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = 0.03
damping = 0.04

# Create variables for simulation state
U  = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

Run the simulation

This is where it gets fun -- running time forward with a simple for loop.


In [0]:
# Run 1000 steps of PDE
for i in range(1000):
  # Step simulation
  # Discretized PDE update rules
  U = U + eps * Ut
  Ut = Ut + eps * (laplace(U) - damping * Ut)

# Show final image
DisplayArray(U.numpy(), rng=[-0.1, 0.1])

Look! Ripples!