#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Signal" with internal class number 0
--- DataSetInfo : Added class "Background" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 25886 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 25886 events
--- Factory : Add Tree TrainAssignTree_Background of type Background with 11737 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 11737 events
--- DataSetInfo : Class index : 0 name : Signal
--- DataSetInfo : Class index : 1 name : Background
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Signal -- number of events : 51772 / sum of weights: 51772
--- DataSetFactory : Background -- number of events : 23474 / sum of weights: 23474
--- DataSetFactory : Signal tree -- total number of entries: 51772
--- DataSetFactory : Background tree -- total number of entries: 23474
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 51772 / sum of weights: 51772
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 23474 / sum of weights: 23474
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Signal event weights by factor: 1
--- DataSetFactory : --> Rescale Background event weights by factor: 2.2055
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Signal -- training events : 25886 (sum of weights: 25886) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 25886 (sum of weights: 25886) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 51772 (sum of weights: 51772)
--- DataSetFactory : Background -- training events : 11737 (sum of weights: 25886) - requested were 0 events
--- DataSetFactory : Background -- testing events : 11737 (sum of weights: 11737) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 23474 (sum of weights: 37623)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs PIDNNm ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.008 +0.017 +0.070 +0.029 +0.113 -0.121 +0.108 -0.015
--- DataSetInfo : log_partPt: +0.008 +1.000 +0.493 +0.042 +0.001 -0.050 +0.362 -0.067 +0.063
--- DataSetInfo : log_partP: +0.017 +0.493 +1.000 +0.014 -0.067 -0.043 +0.179 +0.007 -0.144
--- DataSetInfo : log_ptB: +0.070 +0.042 +0.014 +1.000 -0.005 +0.026 -0.012 +0.024 +0.001
--- DataSetInfo : log_IPs: +0.029 +0.001 -0.067 -0.005 +1.000 -0.067 +0.135 -0.080 -0.036
--- DataSetInfo : partlcs: +0.113 -0.050 -0.043 +0.026 -0.067 +1.000 -0.397 +0.635 -0.061
--- DataSetInfo : PIDNNm: -0.121 +0.362 +0.179 -0.012 +0.135 -0.397 +1.000 -0.428 +0.087
--- DataSetInfo : ghostProb: +0.108 -0.067 +0.007 +0.024 -0.080 +0.635 -0.428 +1.000 -0.078
--- DataSetInfo : log_IPPU: -0.015 +0.063 -0.144 +0.001 -0.036 -0.061 +0.087 -0.078 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs PIDNNm ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.020 +0.009 +0.081 -0.060 +0.108 -0.161 +0.094 -0.005
--- DataSetInfo : log_partPt: +0.020 +1.000 +0.475 +0.066 +0.070 -0.024 +0.284 -0.016 +0.056
--- DataSetInfo : log_partP: +0.009 +0.475 +1.000 +0.039 +0.004 -0.046 +0.133 +0.029 -0.153
--- DataSetInfo : log_ptB: +0.081 +0.066 +0.039 +1.000 -0.011 +0.029 -0.010 +0.015 +0.005
--- DataSetInfo : log_IPs: -0.060 +0.070 +0.004 -0.011 +1.000 -0.115 +0.238 -0.116 -0.071
--- DataSetInfo : partlcs: +0.108 -0.024 -0.046 +0.029 -0.115 +1.000 -0.419 +0.661 -0.047
--- DataSetInfo : PIDNNm: -0.161 +0.284 +0.133 -0.010 +0.238 -0.419 +1.000 -0.429 +0.090
--- DataSetInfo : ghostProb: +0.094 -0.016 +0.029 +0.015 -0.116 +0.661 -0.429 +1.000 -0.064
--- DataSetInfo : log_IPPU: -0.005 +0.056 -0.153 +0.005 -0.071 -0.047 +0.090 -0.064 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Id : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Id : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Id : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Id : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Id : Input : variable 'PIDNNm' (index=6). <---> Output : variable 'PIDNNm' (index=6).
--- Id : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Id : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Deco : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Deco : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Deco : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Deco : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Deco : Input : variable 'PIDNNm' (index=6). <---> Output : variable 'PIDNNm' (index=6).
--- Deco : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Deco : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Norm : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Norm : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Norm : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Norm : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Norm : Input : variable 'PIDNNm' (index=6). <---> Output : variable 'PIDNNm' (index=6).
--- Norm : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Norm : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.55354 0.21476 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partPt: -0.23970 0.31827 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partP: -0.067719 0.35265 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.28756 0.21612 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPs: 0.12723 0.23528 [ -1.0000 1.0000 ]
--- TFHandler_Factory : partlcs: -0.20213 0.20918 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNm: 0.21292 0.28937 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ghostProb: -0.70228 0.10744 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPPU: 0.11268 0.52816 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpsjMIuu/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: 1 : log_partPt : 1.171e-02
--- Id_Deco_NormTransforma...: 2 : PIDNNm : 9.809e-03
--- Id_Deco_NormTransforma...: 3 : log_IPs : 7.189e-03
--- Id_Deco_NormTransforma...: 4 : log_partP : 5.671e-03
--- Id_Deco_NormTransforma...: 5 : mult : 5.630e-03
--- Id_Deco_NormTransforma...: 6 : ghostProb : 4.175e-03
--- Id_Deco_NormTransforma...: 7 : partlcs : 3.174e-03
--- Id_Deco_NormTransforma...: 8 : log_IPPU : 2.220e-03
--- Id_Deco_NormTransforma...: 9 : log_ptB : 2.009e-03
--- Id_Deco_NormTransforma...: -----------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 8 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 2 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=1.35513 testE=1.35552
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 37623 events: 387 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (37623 events)
--- REP_Estimator : Elapsed time for evaluation of 37623 events: 0.137 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpsjMIuu/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : -----------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : -----------------------------------
--- REP_Estimator : 1 : mult : 2.933e+04
--- REP_Estimator : 2 : log_IPPU : 4.861e+02
--- REP_Estimator : 3 : log_partP : 1.126e+02
--- REP_Estimator : 4 : log_IPs : 7.576e+01
--- REP_Estimator : 5 : log_ptB : 4.506e+01
--- REP_Estimator : 6 : partlcs : 1.936e+01
--- REP_Estimator : 7 : PIDNNm : 1.034e+01
--- REP_Estimator : 8 : log_partPt : 5.141e+00
--- REP_Estimator : 9 : ghostProb : 2.299e-02
--- REP_Estimator : -----------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Signal" with internal class number 0
--- DataSetInfo : Added class "Background" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 25757 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 25757 events
--- Factory : Add Tree TrainAssignTree_Background of type Background with 11866 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 11866 events
--- DataSetInfo : Class index : 0 name : Signal
--- DataSetInfo : Class index : 1 name : Background
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Signal -- number of events : 51514 / sum of weights: 51514
--- DataSetFactory : Background -- number of events : 23732 / sum of weights: 23732
--- DataSetFactory : Signal tree -- total number of entries: 51514
--- DataSetFactory : Background tree -- total number of entries: 23732
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 51514 / sum of weights: 51514
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 23732 / sum of weights: 23732
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Signal event weights by factor: 1
--- DataSetFactory : --> Rescale Background event weights by factor: 2.17066
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Signal -- training events : 25757 (sum of weights: 25757) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 25757 (sum of weights: 25757) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 51514 (sum of weights: 51514)
--- DataSetFactory : Background -- training events : 11866 (sum of weights: 25757) - requested were 0 events
--- DataSetFactory : Background -- testing events : 11866 (sum of weights: 11866) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 23732 (sum of weights: 37623)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs PIDNNm ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.016 +0.018 +0.067 +0.027 +0.110 -0.135 +0.093 -0.026
--- DataSetInfo : log_partPt: +0.016 +1.000 +0.486 +0.040 +0.006 -0.062 +0.357 -0.069 +0.068
--- DataSetInfo : log_partP: +0.018 +0.486 +1.000 +0.009 -0.068 -0.042 +0.170 +0.011 -0.143
--- DataSetInfo : log_ptB: +0.067 +0.040 +0.009 +1.000 -0.002 +0.023 -0.017 +0.024 -0.002
--- DataSetInfo : log_IPs: +0.027 +0.006 -0.068 -0.002 +1.000 -0.054 +0.118 -0.067 -0.030
--- DataSetInfo : partlcs: +0.110 -0.062 -0.042 +0.023 -0.054 +1.000 -0.401 +0.623 -0.071
--- DataSetInfo : PIDNNm: -0.135 +0.357 +0.170 -0.017 +0.118 -0.401 +1.000 -0.430 +0.094
--- DataSetInfo : ghostProb: +0.093 -0.069 +0.011 +0.024 -0.067 +0.623 -0.430 +1.000 -0.085
--- DataSetInfo : log_IPPU: -0.026 +0.068 -0.143 -0.002 -0.030 -0.071 +0.094 -0.085 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs PIDNNm ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 -0.005 +0.034 +0.073 -0.058 +0.106 -0.159 +0.120 -0.027
--- DataSetInfo : log_partPt: -0.005 +1.000 +0.464 +0.053 +0.056 -0.045 +0.299 -0.038 +0.046
--- DataSetInfo : log_partP: +0.034 +0.464 +1.000 +0.014 -0.021 -0.067 +0.125 +0.011 -0.134
--- DataSetInfo : log_ptB: +0.073 +0.053 +0.014 +1.000 -0.017 +0.018 -0.021 +0.019 +0.004
--- DataSetInfo : log_IPs: -0.058 +0.056 -0.021 -0.017 +1.000 -0.120 +0.236 -0.128 -0.082
--- DataSetInfo : partlcs: +0.106 -0.045 -0.067 +0.018 -0.120 +1.000 -0.428 +0.662 -0.040
--- DataSetInfo : PIDNNm: -0.159 +0.299 +0.125 -0.021 +0.236 -0.428 +1.000 -0.435 +0.083
--- DataSetInfo : ghostProb: +0.120 -0.038 +0.011 +0.019 -0.128 +0.662 -0.435 +1.000 -0.067
--- DataSetInfo : log_IPPU: -0.027 +0.046 -0.134 +0.004 -0.082 -0.040 +0.083 -0.067 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Id : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Id : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Id : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Id : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Id : Input : variable 'PIDNNm' (index=6). <---> Output : variable 'PIDNNm' (index=6).
--- Id : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Id : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Deco : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Deco : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Deco : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Deco : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Deco : Input : variable 'PIDNNm' (index=6). <---> Output : variable 'PIDNNm' (index=6).
--- Deco : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Deco : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Norm : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Norm : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Norm : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Norm : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Norm : Input : variable 'PIDNNm' (index=6). <---> Output : variable 'PIDNNm' (index=6).
--- Norm : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Norm : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.52880 0.22636 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partPt: -0.23484 0.31826 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partP: -0.074970 0.35720 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.29888 0.18839 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPs: 0.16522 0.22385 [ -1.0000 1.0000 ]
--- TFHandler_Factory : partlcs: -0.34323 0.23390 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNm: 0.15345 0.30579 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ghostProb: -0.66034 0.12437 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPPU: 0.11455 0.52746 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmp4lfJ0l/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: 1 : log_partPt : 1.017e-02
--- Id_Deco_NormTransforma...: 2 : PIDNNm : 8.084e-03
--- Id_Deco_NormTransforma...: 3 : log_partP : 7.030e-03
--- Id_Deco_NormTransforma...: 4 : log_IPs : 5.773e-03
--- Id_Deco_NormTransforma...: 5 : mult : 4.112e-03
--- Id_Deco_NormTransforma...: 6 : ghostProb : 3.314e-03
--- Id_Deco_NormTransforma...: 7 : partlcs : 2.516e-03
--- Id_Deco_NormTransforma...: 8 : log_IPPU : 2.088e-03
--- Id_Deco_NormTransforma...: 9 : log_ptB : 1.903e-03
--- Id_Deco_NormTransforma...: -----------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 17 diag elements < tolerance of 2.2204e-16
--- <WARNING> REP_Estimator : Line search increased error! Something is wrong.fLastAlpha=4.27732al123=2 6 18 err1=35408.3 errfinal=35411.5
--- <WARNING> REP_Estimator :
--- <WARNING> REP_Estimator : negative dError=-4.64661e-05
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=1.35779 testE=1.35812
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 37623 events: 392 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (37623 events)
--- REP_Estimator : Elapsed time for evaluation of 37623 events: 0.139 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmp4lfJ0l/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : -----------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : -----------------------------------
--- REP_Estimator : 1 : mult : 2.057e+04
--- REP_Estimator : 2 : log_IPPU : 5.486e+02
--- REP_Estimator : 3 : log_partP : 1.207e+02
--- REP_Estimator : 4 : log_IPs : 5.196e+01
--- REP_Estimator : 5 : log_ptB : 4.859e+01
--- REP_Estimator : 6 : partlcs : 2.031e+01
--- REP_Estimator : 7 : PIDNNm : 1.221e+01
--- REP_Estimator : 8 : log_partPt : 5.004e+00
--- REP_Estimator : 9 : ghostProb : 2.288e-02
--- REP_Estimator : -----------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Background" with internal class number 0
--- DataSetInfo : Added class "Signal" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Background of type Background with 32967 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 32967 events
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 58339 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 58339 events
--- DataSetInfo : Class index : 0 name : Background
--- DataSetInfo : Class index : 1 name : Signal
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Background -- number of events : 65934 / sum of weights: 65934
--- DataSetFactory : Signal -- number of events : 116678 / sum of weights: 116678
--- DataSetFactory : Background tree -- total number of entries: 65934
--- DataSetFactory : Signal tree -- total number of entries: 116678
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 65934 / sum of weights: 65934
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 116678 / sum of weights: 116678
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Background event weights by factor: 1
--- DataSetFactory : --> Rescale Signal event weights by factor: 0.565094
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Background -- training events : 32967 (sum of weights: 32967) - requested were 0 events
--- DataSetFactory : Background -- testing events : 32967 (sum of weights: 32967) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 65934 (sum of weights: 65934)
--- DataSetFactory : Signal -- training events : 58339 (sum of weights: 32967) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 58339 (sum of weights: 58339) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 116678 (sum of weights: 91306)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult nnkrec log_ptB vflag log_ipsmean log_ptmean vcharge log_svm log_svp BDphiDir log_svtau docamax
--- DataSetInfo : mult: +1.000 +0.086 +0.070 +0.217 -0.071 -0.118 +0.018 +0.202 +0.127 +0.003 -0.068 +0.220
--- DataSetInfo : nnkrec: +0.086 +1.000 +0.006 +0.029 +0.037 -0.030 +0.037 +0.075 +0.038 -0.007 +0.010 +0.058
--- DataSetInfo : log_ptB: +0.070 +0.006 +1.000 +0.012 +0.008 +0.064 -0.008 +0.004 +0.038 +0.006 -0.019 +0.009
--- DataSetInfo : vflag: +0.217 +0.029 +0.012 +1.000 -0.079 -0.463 -0.273 +0.540 +0.258 +0.001 +0.080 +0.524
--- DataSetInfo : log_ipsmean: -0.071 +0.037 +0.008 -0.079 +1.000 +0.233 -0.026 -0.018 -0.088 -0.006 +0.650 -0.183
--- DataSetInfo : log_ptmean: -0.118 -0.030 +0.064 -0.463 +0.233 +1.000 +0.099 -0.121 +0.171 +0.001 -0.086 -0.423
--- DataSetInfo : vcharge: +0.018 +0.037 -0.008 -0.273 -0.026 +0.099 +1.000 -0.097 -0.038 -0.003 -0.062 -0.089
--- DataSetInfo : log_svm: +0.202 +0.075 +0.004 +0.540 -0.018 -0.121 -0.097 +1.000 +0.347 +0.002 -0.057 +0.408
--- DataSetInfo : log_svp: +0.127 +0.038 +0.038 +0.258 -0.088 +0.171 -0.038 +0.347 +1.000 +0.002 -0.124 +0.159
--- DataSetInfo : BDphiDir: +0.003 -0.007 +0.006 +0.001 -0.006 +0.001 -0.003 +0.002 +0.002 +1.000 -0.009 -0.006
--- DataSetInfo : log_svtau: -0.068 +0.010 -0.019 +0.080 +0.650 -0.086 -0.062 -0.057 -0.124 -0.009 +1.000 -0.046
--- DataSetInfo : docamax: +0.220 +0.058 +0.009 +0.524 -0.183 -0.423 -0.089 +0.408 +0.159 -0.006 -0.046 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult nnkrec log_ptB vflag log_ipsmean log_ptmean vcharge log_svm log_svp BDphiDir log_svtau docamax
--- DataSetInfo : mult: +1.000 +0.087 +0.068 +0.219 -0.046 -0.118 -0.033 +0.167 +0.107 +0.003 -0.051 +0.208
--- DataSetInfo : nnkrec: +0.087 +1.000 +0.003 +0.024 +0.016 -0.037 +0.020 +0.051 +0.022 -0.004 +0.014 +0.058
--- DataSetInfo : log_ptB: +0.068 +0.003 +1.000 +0.013 +0.017 +0.068 -0.004 +0.006 +0.033 -0.003 -0.010 +0.005
--- DataSetInfo : vflag: +0.219 +0.024 +0.013 +1.000 -0.065 -0.438 -0.334 +0.529 +0.263 -0.001 +0.097 +0.514
--- DataSetInfo : log_ipsmean: -0.046 +0.016 +0.017 -0.065 +1.000 +0.212 -0.035 +0.010 -0.073 -0.002 +0.657 -0.174
--- DataSetInfo : log_ptmean: -0.118 -0.037 +0.068 -0.438 +0.212 +1.000 +0.169 -0.068 +0.210 +0.004 -0.135 -0.399
--- DataSetInfo : vcharge: -0.033 +0.020 -0.004 -0.334 -0.035 +0.169 +1.000 -0.106 -0.057 -0.000 -0.096 -0.140
--- DataSetInfo : log_svm: +0.167 +0.051 +0.006 +0.529 +0.010 -0.068 -0.106 +1.000 +0.342 +0.002 -0.030 +0.378
--- DataSetInfo : log_svp: +0.107 +0.022 +0.033 +0.263 -0.073 +0.210 -0.057 +0.342 +1.000 +0.001 -0.106 +0.146
--- DataSetInfo : BDphiDir: +0.003 -0.004 -0.003 -0.001 -0.002 +0.004 -0.000 +0.002 +0.001 +1.000 -0.005 -0.005
--- DataSetInfo : log_svtau: -0.051 +0.014 -0.010 +0.097 +0.657 -0.135 -0.096 -0.030 -0.106 -0.005 +1.000 -0.026
--- DataSetInfo : docamax: +0.208 +0.058 +0.005 +0.514 -0.174 -0.399 -0.140 +0.378 +0.146 -0.005 -0.026 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'nnkrec' (index=1). <---> Output : variable 'nnkrec' (index=1).
--- Id : Input : variable 'log_ptB' (index=2). <---> Output : variable 'log_ptB' (index=2).
--- Id : Input : variable 'vflag' (index=3). <---> Output : variable 'vflag' (index=3).
--- Id : Input : variable 'log_ipsmean' (index=4). <---> Output : variable 'log_ipsmean' (index=4).
--- Id : Input : variable 'log_ptmean' (index=5). <---> Output : variable 'log_ptmean' (index=5).
--- Id : Input : variable 'vcharge' (index=6). <---> Output : variable 'vcharge' (index=6).
--- Id : Input : variable 'log_svm' (index=7). <---> Output : variable 'log_svm' (index=7).
--- Id : Input : variable 'log_svp' (index=8). <---> Output : variable 'log_svp' (index=8).
--- Id : Input : variable 'BDphiDir' (index=9). <---> Output : variable 'BDphiDir' (index=9).
--- Id : Input : variable 'log_svtau' (index=10). <---> Output : variable 'log_svtau' (index=10).
--- Id : Input : variable 'docamax' (index=11). <---> Output : variable 'docamax' (index=11).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'nnkrec' (index=1). <---> Output : variable 'nnkrec' (index=1).
--- Deco : Input : variable 'log_ptB' (index=2). <---> Output : variable 'log_ptB' (index=2).
--- Deco : Input : variable 'vflag' (index=3). <---> Output : variable 'vflag' (index=3).
--- Deco : Input : variable 'log_ipsmean' (index=4). <---> Output : variable 'log_ipsmean' (index=4).
--- Deco : Input : variable 'log_ptmean' (index=5). <---> Output : variable 'log_ptmean' (index=5).
--- Deco : Input : variable 'vcharge' (index=6). <---> Output : variable 'vcharge' (index=6).
--- Deco : Input : variable 'log_svm' (index=7). <---> Output : variable 'log_svm' (index=7).
--- Deco : Input : variable 'log_svp' (index=8). <---> Output : variable 'log_svp' (index=8).
--- Deco : Input : variable 'BDphiDir' (index=9). <---> Output : variable 'BDphiDir' (index=9).
--- Deco : Input : variable 'log_svtau' (index=10). <---> Output : variable 'log_svtau' (index=10).
--- Deco : Input : variable 'docamax' (index=11). <---> Output : variable 'docamax' (index=11).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'nnkrec' (index=1). <---> Output : variable 'nnkrec' (index=1).
--- Norm : Input : variable 'log_ptB' (index=2). <---> Output : variable 'log_ptB' (index=2).
--- Norm : Input : variable 'vflag' (index=3). <---> Output : variable 'vflag' (index=3).
--- Norm : Input : variable 'log_ipsmean' (index=4). <---> Output : variable 'log_ipsmean' (index=4).
--- Norm : Input : variable 'log_ptmean' (index=5). <---> Output : variable 'log_ptmean' (index=5).
--- Norm : Input : variable 'vcharge' (index=6). <---> Output : variable 'vcharge' (index=6).
--- Norm : Input : variable 'log_svm' (index=7). <---> Output : variable 'log_svm' (index=7).
--- Norm : Input : variable 'log_svp' (index=8). <---> Output : variable 'log_svp' (index=8).
--- Norm : Input : variable 'BDphiDir' (index=9). <---> Output : variable 'BDphiDir' (index=9).
--- Norm : Input : variable 'log_svtau' (index=10). <---> Output : variable 'log_svtau' (index=10).
--- Norm : Input : variable 'docamax' (index=11). <---> Output : variable 'docamax' (index=11).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : --------------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : --------------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.62244 0.18718 [ -1.0000 1.0000 ]
--- TFHandler_Factory : nnkrec: -0.58050 0.26330 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.34715 0.20779 [ -1.0000 1.0000 ]
--- TFHandler_Factory : vflag: -0.55786 0.17873 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ipsmean: -0.067655 0.23288 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptmean: -0.29881 0.24866 [ -1.0000 1.0000 ]
--- TFHandler_Factory : vcharge: -0.21271 0.40218 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_svm: -0.14657 0.25925 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_svp: -0.12375 0.31620 [ -1.0000 1.0000 ]
--- TFHandler_Factory : BDphiDir: 0.0017789 0.57725 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_svtau: 0.075845 0.16638 [ -1.0000 1.0000 ]
--- TFHandler_Factory : docamax: -0.36165 0.20407 [ -1.0000 1.0000 ]
--- TFHandler_Factory : --------------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmps6WtPC/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: ------------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: ------------------------------------
--- Id_Deco_NormTransforma...: 1 : vcharge : 1.010e-02
--- Id_Deco_NormTransforma...: 2 : log_ptmean : 4.391e-03
--- Id_Deco_NormTransforma...: 3 : log_svtau : 2.803e-03
--- Id_Deco_NormTransforma...: 4 : mult : 2.732e-03
--- Id_Deco_NormTransforma...: 5 : log_svm : 2.707e-03
--- Id_Deco_NormTransforma...: 6 : nnkrec : 1.646e-03
--- Id_Deco_NormTransforma...: 7 : docamax : 1.390e-03
--- Id_Deco_NormTransforma...: 8 : vflag : 1.360e-03
--- Id_Deco_NormTransforma...: 9 : log_ipsmean : 1.149e-03
--- Id_Deco_NormTransforma...: 10 : log_svp : 8.720e-04
--- Id_Deco_NormTransforma...: 11 : log_ptB : 5.962e-04
--- Id_Deco_NormTransforma...: 12 : BDphiDir : 4.004e-04
--- Id_Deco_NormTransforma...: ------------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 10 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 4 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 2 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 5 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=1.37124 testE=1.37232
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 91306 events: 905 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (91306 events)
--- REP_Estimator : Elapsed time for evaluation of 91306 events: 0.288 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmps6WtPC/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : ------------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : ------------------------------------
--- REP_Estimator : 1 : mult : 5.931e+04
--- REP_Estimator : 2 : log_svp : 3.959e+02
--- REP_Estimator : 3 : vflag : 2.636e+02
--- REP_Estimator : 4 : nnkrec : 9.831e+01
--- REP_Estimator : 5 : log_ipsmean : 8.159e+01
--- REP_Estimator : 6 : log_ptB : 5.000e+01
--- REP_Estimator : 7 : BDphiDir : 1.986e+01
--- REP_Estimator : 8 : vcharge : 1.504e+01
--- REP_Estimator : 9 : log_svm : 1.336e+01
--- REP_Estimator : 10 : log_svtau : 1.232e+01
--- REP_Estimator : 11 : log_ptmean : 5.607e+00
--- REP_Estimator : 12 : docamax : 1.024e-02
--- REP_Estimator : ------------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Signal" with internal class number 0
--- DataSetInfo : Added class "Background" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 58343 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 58343 events
--- Factory : Add Tree TrainAssignTree_Background of type Background with 32964 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 32964 events
--- DataSetInfo : Class index : 0 name : Signal
--- DataSetInfo : Class index : 1 name : Background
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Signal -- number of events : 116686 / sum of weights: 116686
--- DataSetFactory : Background -- number of events : 65928 / sum of weights: 65928
--- DataSetFactory : Signal tree -- total number of entries: 116686
--- DataSetFactory : Background tree -- total number of entries: 65928
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 116686 / sum of weights: 116686
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 65928 / sum of weights: 65928
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Signal event weights by factor: 1
--- DataSetFactory : --> Rescale Background event weights by factor: 1.7699
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Signal -- training events : 58343 (sum of weights: 58343) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 58343 (sum of weights: 58343) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 116686 (sum of weights: 116686)
--- DataSetFactory : Background -- training events : 32964 (sum of weights: 58343) - requested were 0 events
--- DataSetFactory : Background -- testing events : 32964 (sum of weights: 32964) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 65928 (sum of weights: 91307)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult nnkrec log_ptB vflag log_ipsmean log_ptmean vcharge log_svm log_svp BDphiDir log_svtau docamax
--- DataSetInfo : mult: +1.000 +0.088 +0.063 +0.219 -0.046 -0.121 -0.025 +0.164 +0.109 -0.001 -0.044 +0.209
--- DataSetInfo : nnkrec: +0.088 +1.000 +0.001 +0.027 +0.020 -0.034 +0.013 +0.054 +0.034 +0.003 +0.016 +0.065
--- DataSetInfo : log_ptB: +0.063 +0.001 +1.000 +0.009 +0.007 +0.066 -0.010 +0.000 +0.045 +0.005 -0.013 +0.002
--- DataSetInfo : vflag: +0.219 +0.027 +0.009 +1.000 -0.066 -0.435 -0.328 +0.527 +0.261 -0.001 +0.097 +0.516
--- DataSetInfo : log_ipsmean: -0.046 +0.020 +0.007 -0.066 +1.000 +0.219 -0.027 +0.022 -0.060 +0.003 +0.652 -0.176
--- DataSetInfo : log_ptmean: -0.121 -0.034 +0.066 -0.435 +0.219 +1.000 +0.158 -0.063 +0.216 -0.002 -0.134 -0.402
--- DataSetInfo : vcharge: -0.025 +0.013 -0.010 -0.328 -0.027 +0.158 +1.000 -0.109 -0.066 -0.002 -0.087 -0.140
--- DataSetInfo : log_svm: +0.164 +0.054 +0.000 +0.527 +0.022 -0.063 -0.109 +1.000 +0.346 -0.007 -0.021 +0.374
--- DataSetInfo : log_svp: +0.109 +0.034 +0.045 +0.261 -0.060 +0.216 -0.066 +0.346 +1.000 -0.002 -0.110 +0.142
--- DataSetInfo : BDphiDir: -0.001 +0.003 +0.005 -0.001 +0.003 -0.002 -0.002 -0.007 -0.002 +1.000 +0.009 +0.004
--- DataSetInfo : log_svtau: -0.044 +0.016 -0.013 +0.097 +0.652 -0.134 -0.087 -0.021 -0.110 +0.009 +1.000 -0.026
--- DataSetInfo : docamax: +0.209 +0.065 +0.002 +0.516 -0.176 -0.402 -0.140 +0.374 +0.142 +0.004 -0.026 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult nnkrec log_ptB vflag log_ipsmean log_ptmean vcharge log_svm log_svp BDphiDir log_svtau docamax
--- DataSetInfo : mult: +1.000 +0.086 +0.063 +0.204 -0.085 -0.124 +0.012 +0.192 +0.115 +0.007 -0.077 +0.209
--- DataSetInfo : nnkrec: +0.086 +1.000 +0.005 +0.023 +0.040 -0.028 +0.042 +0.079 +0.052 +0.001 +0.016 +0.070
--- DataSetInfo : log_ptB: +0.063 +0.005 +1.000 +0.007 +0.006 +0.069 -0.002 -0.004 +0.036 +0.002 -0.014 -0.006
--- DataSetInfo : vflag: +0.204 +0.023 +0.007 +1.000 -0.087 -0.465 -0.283 +0.541 +0.258 -0.005 +0.075 +0.515
--- DataSetInfo : log_ipsmean: -0.085 +0.040 +0.006 -0.087 +1.000 +0.233 -0.031 -0.018 -0.081 -0.004 +0.643 -0.184
--- DataSetInfo : log_ptmean: -0.124 -0.028 +0.069 -0.465 +0.233 +1.000 +0.107 -0.120 +0.175 -0.005 -0.088 -0.413
--- DataSetInfo : vcharge: +0.012 +0.042 -0.002 -0.283 -0.031 +0.107 +1.000 -0.095 -0.041 +0.002 -0.066 -0.092
--- DataSetInfo : log_svm: +0.192 +0.079 -0.004 +0.541 -0.018 -0.120 -0.095 +1.000 +0.344 -0.002 -0.056 +0.410
--- DataSetInfo : log_svp: +0.115 +0.052 +0.036 +0.258 -0.081 +0.175 -0.041 +0.344 +1.000 -0.012 -0.124 +0.159
--- DataSetInfo : BDphiDir: +0.007 +0.001 +0.002 -0.005 -0.004 -0.005 +0.002 -0.002 -0.012 +1.000 -0.006 -0.001
--- DataSetInfo : log_svtau: -0.077 +0.016 -0.014 +0.075 +0.643 -0.088 -0.066 -0.056 -0.124 -0.006 +1.000 -0.055
--- DataSetInfo : docamax: +0.209 +0.070 -0.006 +0.515 -0.184 -0.413 -0.092 +0.410 +0.159 -0.001 -0.055 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'nnkrec' (index=1). <---> Output : variable 'nnkrec' (index=1).
--- Id : Input : variable 'log_ptB' (index=2). <---> Output : variable 'log_ptB' (index=2).
--- Id : Input : variable 'vflag' (index=3). <---> Output : variable 'vflag' (index=3).
--- Id : Input : variable 'log_ipsmean' (index=4). <---> Output : variable 'log_ipsmean' (index=4).
--- Id : Input : variable 'log_ptmean' (index=5). <---> Output : variable 'log_ptmean' (index=5).
--- Id : Input : variable 'vcharge' (index=6). <---> Output : variable 'vcharge' (index=6).
--- Id : Input : variable 'log_svm' (index=7). <---> Output : variable 'log_svm' (index=7).
--- Id : Input : variable 'log_svp' (index=8). <---> Output : variable 'log_svp' (index=8).
--- Id : Input : variable 'BDphiDir' (index=9). <---> Output : variable 'BDphiDir' (index=9).
--- Id : Input : variable 'log_svtau' (index=10). <---> Output : variable 'log_svtau' (index=10).
--- Id : Input : variable 'docamax' (index=11). <---> Output : variable 'docamax' (index=11).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'nnkrec' (index=1). <---> Output : variable 'nnkrec' (index=1).
--- Deco : Input : variable 'log_ptB' (index=2). <---> Output : variable 'log_ptB' (index=2).
--- Deco : Input : variable 'vflag' (index=3). <---> Output : variable 'vflag' (index=3).
--- Deco : Input : variable 'log_ipsmean' (index=4). <---> Output : variable 'log_ipsmean' (index=4).
--- Deco : Input : variable 'log_ptmean' (index=5). <---> Output : variable 'log_ptmean' (index=5).
--- Deco : Input : variable 'vcharge' (index=6). <---> Output : variable 'vcharge' (index=6).
--- Deco : Input : variable 'log_svm' (index=7). <---> Output : variable 'log_svm' (index=7).
--- Deco : Input : variable 'log_svp' (index=8). <---> Output : variable 'log_svp' (index=8).
--- Deco : Input : variable 'BDphiDir' (index=9). <---> Output : variable 'BDphiDir' (index=9).
--- Deco : Input : variable 'log_svtau' (index=10). <---> Output : variable 'log_svtau' (index=10).
--- Deco : Input : variable 'docamax' (index=11). <---> Output : variable 'docamax' (index=11).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'nnkrec' (index=1). <---> Output : variable 'nnkrec' (index=1).
--- Norm : Input : variable 'log_ptB' (index=2). <---> Output : variable 'log_ptB' (index=2).
--- Norm : Input : variable 'vflag' (index=3). <---> Output : variable 'vflag' (index=3).
--- Norm : Input : variable 'log_ipsmean' (index=4). <---> Output : variable 'log_ipsmean' (index=4).
--- Norm : Input : variable 'log_ptmean' (index=5). <---> Output : variable 'log_ptmean' (index=5).
--- Norm : Input : variable 'vcharge' (index=6). <---> Output : variable 'vcharge' (index=6).
--- Norm : Input : variable 'log_svm' (index=7). <---> Output : variable 'log_svm' (index=7).
--- Norm : Input : variable 'log_svp' (index=8). <---> Output : variable 'log_svp' (index=8).
--- Norm : Input : variable 'BDphiDir' (index=9). <---> Output : variable 'BDphiDir' (index=9).
--- Norm : Input : variable 'log_svtau' (index=10). <---> Output : variable 'log_svtau' (index=10).
--- Norm : Input : variable 'docamax' (index=11). <---> Output : variable 'docamax' (index=11).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : --------------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : --------------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.51266 0.23312 [ -1.0000 1.0000 ]
--- TFHandler_Factory : nnkrec: -0.58896 0.25650 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.25462 0.19096 [ -1.0000 1.0000 ]
--- TFHandler_Factory : vflag: -0.50694 0.20497 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ipsmean: -0.058246 0.20774 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptmean: -0.33265 0.25805 [ -1.0000 1.0000 ]
--- TFHandler_Factory : vcharge: -0.20425 0.41313 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_svm: -0.16125 0.25009 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_svp: -0.10075 0.32644 [ -1.0000 1.0000 ]
--- TFHandler_Factory : BDphiDir: 0.00054056 0.57774 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_svtau: 0.016460 0.16557 [ -1.0000 1.0000 ]
--- TFHandler_Factory : docamax: -0.34878 0.20304 [ -1.0000 1.0000 ]
--- TFHandler_Factory : --------------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpVZK0zR/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: ------------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: ------------------------------------
--- Id_Deco_NormTransforma...: 1 : vcharge : 1.038e-02
--- Id_Deco_NormTransforma...: 2 : log_ptmean : 4.576e-03
--- Id_Deco_NormTransforma...: 3 : log_svm : 3.006e-03
--- Id_Deco_NormTransforma...: 4 : log_svtau : 2.644e-03
--- Id_Deco_NormTransforma...: 5 : mult : 2.414e-03
--- Id_Deco_NormTransforma...: 6 : nnkrec : 1.579e-03
--- Id_Deco_NormTransforma...: 7 : vflag : 1.505e-03
--- Id_Deco_NormTransforma...: 8 : log_ipsmean : 1.464e-03
--- Id_Deco_NormTransforma...: 9 : docamax : 1.335e-03
--- Id_Deco_NormTransforma...: 10 : log_svp : 7.404e-04
--- Id_Deco_NormTransforma...: 11 : log_ptB : 5.202e-04
--- Id_Deco_NormTransforma...: 12 : BDphiDir : 3.589e-04
--- Id_Deco_NormTransforma...: ------------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 8 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 4 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::DecomposeLUCrout>: matrix is singular
Error in <TDecompLU::InvertLU>: matrix is singular, 2 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=1.36942 testE=1.37025
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 91307 events: 939 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (91307 events)
--- REP_Estimator : Elapsed time for evaluation of 91307 events: 0.298 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpVZK0zR/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : ------------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : ------------------------------------
--- REP_Estimator : 1 : mult : 8.448e+04
--- REP_Estimator : 2 : log_svp : 5.046e+02
--- REP_Estimator : 3 : vflag : 3.191e+02
--- REP_Estimator : 4 : nnkrec : 1.119e+02
--- REP_Estimator : 5 : log_ipsmean : 1.025e+02
--- REP_Estimator : 6 : log_ptB : 5.354e+01
--- REP_Estimator : 7 : BDphiDir : 2.973e+01
--- REP_Estimator : 8 : vcharge : 1.388e+01
--- REP_Estimator : 9 : log_svm : 1.109e+01
--- REP_Estimator : 10 : log_svtau : 1.005e+01
--- REP_Estimator : 11 : log_ptmean : 5.149e+00
--- REP_Estimator : 12 : docamax : 1.086e-02
--- REP_Estimator : ------------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Background" with internal class number 0
--- DataSetInfo : Added class "Signal" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Background of type Background with 45436 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 45436 events
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 86775 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 86775 events
--- DataSetInfo : Class index : 0 name : Background
--- DataSetInfo : Class index : 1 name : Signal
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Background -- number of events : 90872 / sum of weights: 90872
--- DataSetFactory : Signal -- number of events : 173550 / sum of weights: 173550
--- DataSetFactory : Background tree -- total number of entries: 90872
--- DataSetFactory : Signal tree -- total number of entries: 173550
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 90872 / sum of weights: 90872
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 173550 / sum of weights: 173550
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Background event weights by factor: 1
--- DataSetFactory : --> Rescale Signal event weights by factor: 0.523607
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Background -- training events : 45436 (sum of weights: 45436) - requested were 0 events
--- DataSetFactory : Background -- testing events : 45436 (sum of weights: 45436) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 90872 (sum of weights: 90872)
--- DataSetFactory : Signal -- training events : 86775 (sum of weights: 45436) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 86775 (sum of weights: 86775) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 173550 (sum of weights: 132211)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP nnkrec log_ptB log_IPs partlcs PIDNNk PIDNNpi PIDNNp ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.032 +0.044 +0.093 +0.068 -0.039 +0.093 -0.072 +0.038 +0.008 +0.030 -0.014
--- DataSetInfo : log_partPt: +0.032 +1.000 +0.494 -0.008 +0.058 +0.107 -0.025 +0.175 +0.017 -0.295 -0.059 +0.074
--- DataSetInfo : log_partP: +0.044 +0.494 +1.000 +0.021 +0.030 -0.016 +0.057 +0.340 +0.112 -0.580 -0.162 -0.172
--- DataSetInfo : nnkrec: +0.093 -0.008 +0.021 +1.000 +0.013 +0.022 +0.068 -0.093 +0.055 +0.028 +0.019 -0.705
--- DataSetInfo : log_ptB: +0.068 +0.058 +0.030 +0.013 +1.000 +0.007 +0.017 +0.004 +0.003 -0.017 -0.003 -0.010
--- DataSetInfo : log_IPs: -0.039 +0.107 -0.016 +0.022 +0.007 +1.000 -0.055 +0.022 -0.029 +0.022 -0.060 +0.001
--- DataSetInfo : partlcs: +0.093 -0.025 +0.057 +0.068 +0.017 -0.055 +1.000 -0.135 -0.043 -0.093 +0.342 -0.066
--- DataSetInfo : PIDNNk: -0.072 +0.175 +0.340 -0.093 +0.004 +0.022 -0.135 +1.000 -0.577 -0.403 -0.383 +0.032
--- DataSetInfo : PIDNNpi: +0.038 +0.017 +0.112 +0.055 +0.003 -0.029 -0.043 -0.577 +1.000 -0.185 +0.279 -0.076
--- DataSetInfo : PIDNNp: +0.008 -0.295 -0.580 +0.028 -0.017 +0.022 -0.093 -0.403 -0.185 +1.000 -0.089 +0.058
--- DataSetInfo : ghostProb: +0.030 -0.059 -0.162 +0.019 -0.003 -0.060 +0.342 -0.383 +0.279 -0.089 +1.000 -0.001
--- DataSetInfo : log_IPPU: -0.014 +0.074 -0.172 -0.705 -0.010 +0.001 -0.066 +0.032 -0.076 +0.058 -0.001 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP nnkrec log_ptB log_IPs partlcs PIDNNk PIDNNpi PIDNNp ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.031 +0.043 +0.099 +0.063 +0.005 +0.083 -0.092 +0.061 +0.024 +0.035 -0.017
--- DataSetInfo : log_partPt: +0.031 +1.000 +0.509 +0.000 +0.061 +0.113 -0.030 +0.199 +0.027 -0.323 -0.078 +0.071
--- DataSetInfo : log_partP: +0.043 +0.509 +1.000 +0.003 +0.036 -0.028 +0.037 +0.368 +0.136 -0.610 -0.175 -0.140
--- DataSetInfo : nnkrec: +0.099 +0.000 +0.003 +1.000 +0.008 +0.015 +0.070 -0.108 +0.062 +0.048 +0.028 -0.709
--- DataSetInfo : log_ptB: +0.063 +0.061 +0.036 +0.008 +1.000 +0.009 +0.012 +0.004 +0.008 -0.024 -0.002 +0.001
--- DataSetInfo : log_IPs: +0.005 +0.113 -0.028 +0.015 +0.009 +1.000 -0.037 +0.015 -0.035 +0.028 -0.044 +0.016
--- DataSetInfo : partlcs: +0.083 -0.030 +0.037 +0.070 +0.012 -0.037 +1.000 -0.141 -0.029 -0.062 +0.342 -0.061
--- DataSetInfo : PIDNNk: -0.092 +0.199 +0.368 -0.108 +0.004 +0.015 -0.141 +1.000 -0.566 -0.486 -0.389 +0.044
--- DataSetInfo : PIDNNpi: +0.061 +0.027 +0.136 +0.062 +0.008 -0.035 -0.029 -0.566 +1.000 -0.123 +0.284 -0.082
--- DataSetInfo : PIDNNp: +0.024 -0.323 -0.610 +0.048 -0.024 +0.028 -0.062 -0.486 -0.123 +1.000 -0.031 +0.040
--- DataSetInfo : ghostProb: +0.035 -0.078 -0.175 +0.028 -0.002 -0.044 +0.342 -0.389 +0.284 -0.031 +1.000 -0.010
--- DataSetInfo : log_IPPU: -0.017 +0.071 -0.140 -0.709 +0.001 +0.016 -0.061 +0.044 -0.082 +0.040 -0.010 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Id : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Id : Input : variable 'nnkrec' (index=3). <---> Output : variable 'nnkrec' (index=3).
--- Id : Input : variable 'log_ptB' (index=4). <---> Output : variable 'log_ptB' (index=4).
--- Id : Input : variable 'log_IPs' (index=5). <---> Output : variable 'log_IPs' (index=5).
--- Id : Input : variable 'partlcs' (index=6). <---> Output : variable 'partlcs' (index=6).
--- Id : Input : variable 'PIDNNk' (index=7). <---> Output : variable 'PIDNNk' (index=7).
--- Id : Input : variable 'PIDNNpi' (index=8). <---> Output : variable 'PIDNNpi' (index=8).
--- Id : Input : variable 'PIDNNp' (index=9). <---> Output : variable 'PIDNNp' (index=9).
--- Id : Input : variable 'ghostProb' (index=10). <---> Output : variable 'ghostProb' (index=10).
--- Id : Input : variable 'log_IPPU' (index=11). <---> Output : variable 'log_IPPU' (index=11).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Deco : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Deco : Input : variable 'nnkrec' (index=3). <---> Output : variable 'nnkrec' (index=3).
--- Deco : Input : variable 'log_ptB' (index=4). <---> Output : variable 'log_ptB' (index=4).
--- Deco : Input : variable 'log_IPs' (index=5). <---> Output : variable 'log_IPs' (index=5).
--- Deco : Input : variable 'partlcs' (index=6). <---> Output : variable 'partlcs' (index=6).
--- Deco : Input : variable 'PIDNNk' (index=7). <---> Output : variable 'PIDNNk' (index=7).
--- Deco : Input : variable 'PIDNNpi' (index=8). <---> Output : variable 'PIDNNpi' (index=8).
--- Deco : Input : variable 'PIDNNp' (index=9). <---> Output : variable 'PIDNNp' (index=9).
--- Deco : Input : variable 'ghostProb' (index=10). <---> Output : variable 'ghostProb' (index=10).
--- Deco : Input : variable 'log_IPPU' (index=11). <---> Output : variable 'log_IPPU' (index=11).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Norm : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Norm : Input : variable 'nnkrec' (index=3). <---> Output : variable 'nnkrec' (index=3).
--- Norm : Input : variable 'log_ptB' (index=4). <---> Output : variable 'log_ptB' (index=4).
--- Norm : Input : variable 'log_IPs' (index=5). <---> Output : variable 'log_IPs' (index=5).
--- Norm : Input : variable 'partlcs' (index=6). <---> Output : variable 'partlcs' (index=6).
--- Norm : Input : variable 'PIDNNk' (index=7). <---> Output : variable 'PIDNNk' (index=7).
--- Norm : Input : variable 'PIDNNpi' (index=8). <---> Output : variable 'PIDNNpi' (index=8).
--- Norm : Input : variable 'PIDNNp' (index=9). <---> Output : variable 'PIDNNp' (index=9).
--- Norm : Input : variable 'ghostProb' (index=10). <---> Output : variable 'ghostProb' (index=10).
--- Norm : Input : variable 'log_IPPU' (index=11). <---> Output : variable 'log_IPPU' (index=11).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.56198 0.20221 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partPt: -0.31738 0.28009 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partP: -0.14359 0.31526 [ -1.0000 1.0000 ]
--- TFHandler_Factory : nnkrec: -0.59691 0.20694 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.41020 0.17848 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPs: -0.36981 0.37993 [ -1.0000 1.0000 ]
--- TFHandler_Factory : partlcs: -0.25539 0.22532 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNk: 0.20115 0.25907 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNpi: -0.20809 0.24473 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNp: -0.19345 0.24278 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ghostProb: -0.49518 0.18502 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPPU: 0.063988 0.45325 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpRGTbeB/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: 1 : PIDNNk : 6.876e-03
--- Id_Deco_NormTransforma...: 2 : ghostProb : 4.069e-03
--- Id_Deco_NormTransforma...: 3 : log_partP : 3.320e-03
--- Id_Deco_NormTransforma...: 4 : PIDNNpi : 3.225e-03
--- Id_Deco_NormTransforma...: 5 : log_IPs : 3.215e-03
--- Id_Deco_NormTransforma...: 6 : log_partPt : 2.866e-03
--- Id_Deco_NormTransforma...: 7 : PIDNNp : 2.578e-03
--- Id_Deco_NormTransforma...: 8 : mult : 2.200e-03
--- Id_Deco_NormTransforma...: 9 : partlcs : 1.469e-03
--- Id_Deco_NormTransforma...: 10 : log_IPPU : 1.451e-03
--- Id_Deco_NormTransforma...: 11 : nnkrec : 1.199e-03
--- Id_Deco_NormTransforma...: 12 : log_ptB : 3.238e-04
--- Id_Deco_NormTransforma...: -----------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 20 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=1.37896 testE=1.38109
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 132211 events: 1.37e+03 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (132211 events)
--- REP_Estimator : Elapsed time for evaluation of 132211 events: 0.407 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpRGTbeB/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : -----------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : -----------------------------------
--- REP_Estimator : 1 : mult : 2.858e+04
--- REP_Estimator : 2 : log_IPPU : 6.341e+02
--- REP_Estimator : 3 : log_partP : 1.912e+02
--- REP_Estimator : 4 : log_IPs : 1.606e+02
--- REP_Estimator : 5 : nnkrec : 1.068e+02
--- REP_Estimator : 6 : log_ptB : 4.286e+01
--- REP_Estimator : 7 : partlcs : 2.281e+01
--- REP_Estimator : 8 : PIDNNk : 9.110e+00
--- REP_Estimator : 9 : log_partPt : 5.055e+00
--- REP_Estimator : 10 : PIDNNpi : 1.075e+00
--- REP_Estimator : 11 : PIDNNp : 3.461e-01
--- REP_Estimator : 12 : ghostProb : 1.316e-01
--- REP_Estimator : -----------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Background" with internal class number 0
--- DataSetInfo : Added class "Signal" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Background of type Background with 45392 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 45392 events
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 86819 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 86819 events
--- DataSetInfo : Class index : 0 name : Background
--- DataSetInfo : Class index : 1 name : Signal
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Background -- number of events : 90784 / sum of weights: 90784
--- DataSetFactory : Signal -- number of events : 173638 / sum of weights: 173638
--- DataSetFactory : Background tree -- total number of entries: 90784
--- DataSetFactory : Signal tree -- total number of entries: 173638
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 90784 / sum of weights: 90784
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 173638 / sum of weights: 173638
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Background event weights by factor: 1
--- DataSetFactory : --> Rescale Signal event weights by factor: 0.522835
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Background -- training events : 45392 (sum of weights: 45392) - requested were 0 events
--- DataSetFactory : Background -- testing events : 45392 (sum of weights: 45392) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 90784 (sum of weights: 90784)
--- DataSetFactory : Signal -- training events : 86819 (sum of weights: 45392) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 86819 (sum of weights: 86819) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 173638 (sum of weights: 132211)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP nnkrec log_ptB log_IPs partlcs PIDNNk PIDNNpi PIDNNp ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.030 +0.042 +0.087 +0.070 -0.039 +0.093 -0.078 +0.047 +0.005 +0.033 -0.003
--- DataSetInfo : log_partPt: +0.030 +1.000 +0.502 +0.006 +0.081 +0.110 -0.024 +0.164 +0.025 -0.296 -0.068 +0.064
--- DataSetInfo : log_partP: +0.042 +0.502 +1.000 +0.021 +0.052 -0.004 +0.043 +0.335 +0.118 -0.586 -0.170 -0.170
--- DataSetInfo : nnkrec: +0.087 +0.006 +0.021 +1.000 +0.007 +0.018 +0.071 -0.102 +0.059 +0.030 +0.025 -0.701
--- DataSetInfo : log_ptB: +0.070 +0.081 +0.052 +0.007 +1.000 +0.006 +0.016 +0.003 +0.006 -0.034 -0.000 -0.000
--- DataSetInfo : log_IPs: -0.039 +0.110 -0.004 +0.018 +0.006 +1.000 -0.057 +0.019 -0.022 +0.029 -0.063 -0.001
--- DataSetInfo : partlcs: +0.093 -0.024 +0.043 +0.071 +0.016 -0.057 +1.000 -0.138 -0.042 -0.084 +0.354 -0.067
--- DataSetInfo : PIDNNk: -0.078 +0.164 +0.335 -0.102 +0.003 +0.019 -0.138 +1.000 -0.581 -0.401 -0.378 +0.038
--- DataSetInfo : PIDNNpi: +0.047 +0.025 +0.118 +0.059 +0.006 -0.022 -0.042 -0.581 +1.000 -0.186 +0.276 -0.073
--- DataSetInfo : PIDNNp: +0.005 -0.296 -0.586 +0.030 -0.034 +0.029 -0.084 -0.401 -0.186 +1.000 -0.084 +0.058
--- DataSetInfo : ghostProb: +0.033 -0.068 -0.170 +0.025 -0.000 -0.063 +0.354 -0.378 +0.276 -0.084 +1.000 -0.004
--- DataSetInfo : log_IPPU: -0.003 +0.064 -0.170 -0.701 -0.000 -0.001 -0.067 +0.038 -0.073 +0.058 -0.004 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP nnkrec log_ptB log_IPs partlcs PIDNNk PIDNNpi PIDNNp ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.029 +0.049 +0.096 +0.067 -0.001 +0.087 -0.082 +0.052 +0.016 +0.029 -0.018
--- DataSetInfo : log_partPt: +0.029 +1.000 +0.506 +0.009 +0.061 +0.117 -0.029 +0.208 +0.023 -0.323 -0.075 +0.065
--- DataSetInfo : log_partP: +0.049 +0.506 +1.000 +0.012 +0.035 -0.025 +0.039 +0.372 +0.133 -0.611 -0.177 -0.151
--- DataSetInfo : nnkrec: +0.096 +0.009 +0.012 +1.000 +0.007 +0.013 +0.071 -0.103 +0.057 +0.041 +0.026 -0.709
--- DataSetInfo : log_ptB: +0.067 +0.061 +0.035 +0.007 +1.000 +0.009 +0.008 -0.001 +0.010 -0.019 -0.001 +0.004
--- DataSetInfo : log_IPs: -0.001 +0.117 -0.025 +0.013 +0.009 +1.000 -0.036 +0.018 -0.029 +0.023 -0.046 +0.018
--- DataSetInfo : partlcs: +0.087 -0.029 +0.039 +0.071 +0.008 -0.036 +1.000 -0.136 -0.036 -0.064 +0.328 -0.067
--- DataSetInfo : PIDNNk: -0.082 +0.208 +0.372 -0.103 -0.001 +0.018 -0.136 +1.000 -0.562 -0.487 -0.389 +0.042
--- DataSetInfo : PIDNNpi: +0.052 +0.023 +0.133 +0.057 +0.010 -0.029 -0.036 -0.562 +1.000 -0.123 +0.281 -0.077
--- DataSetInfo : PIDNNp: +0.016 -0.323 -0.611 +0.041 -0.019 +0.023 -0.064 -0.487 -0.123 +1.000 -0.030 +0.045
--- DataSetInfo : ghostProb: +0.029 -0.075 -0.177 +0.026 -0.001 -0.046 +0.328 -0.389 +0.281 -0.030 +1.000 -0.011
--- DataSetInfo : log_IPPU: -0.018 +0.065 -0.151 -0.709 +0.004 +0.018 -0.067 +0.042 -0.077 +0.045 -0.011 +1.000
--- DataSetInfo : -------------------------------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Id : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Id : Input : variable 'nnkrec' (index=3). <---> Output : variable 'nnkrec' (index=3).
--- Id : Input : variable 'log_ptB' (index=4). <---> Output : variable 'log_ptB' (index=4).
--- Id : Input : variable 'log_IPs' (index=5). <---> Output : variable 'log_IPs' (index=5).
--- Id : Input : variable 'partlcs' (index=6). <---> Output : variable 'partlcs' (index=6).
--- Id : Input : variable 'PIDNNk' (index=7). <---> Output : variable 'PIDNNk' (index=7).
--- Id : Input : variable 'PIDNNpi' (index=8). <---> Output : variable 'PIDNNpi' (index=8).
--- Id : Input : variable 'PIDNNp' (index=9). <---> Output : variable 'PIDNNp' (index=9).
--- Id : Input : variable 'ghostProb' (index=10). <---> Output : variable 'ghostProb' (index=10).
--- Id : Input : variable 'log_IPPU' (index=11). <---> Output : variable 'log_IPPU' (index=11).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Deco : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Deco : Input : variable 'nnkrec' (index=3). <---> Output : variable 'nnkrec' (index=3).
--- Deco : Input : variable 'log_ptB' (index=4). <---> Output : variable 'log_ptB' (index=4).
--- Deco : Input : variable 'log_IPs' (index=5). <---> Output : variable 'log_IPs' (index=5).
--- Deco : Input : variable 'partlcs' (index=6). <---> Output : variable 'partlcs' (index=6).
--- Deco : Input : variable 'PIDNNk' (index=7). <---> Output : variable 'PIDNNk' (index=7).
--- Deco : Input : variable 'PIDNNpi' (index=8). <---> Output : variable 'PIDNNpi' (index=8).
--- Deco : Input : variable 'PIDNNp' (index=9). <---> Output : variable 'PIDNNp' (index=9).
--- Deco : Input : variable 'ghostProb' (index=10). <---> Output : variable 'ghostProb' (index=10).
--- Deco : Input : variable 'log_IPPU' (index=11). <---> Output : variable 'log_IPPU' (index=11).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Norm : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Norm : Input : variable 'nnkrec' (index=3). <---> Output : variable 'nnkrec' (index=3).
--- Norm : Input : variable 'log_ptB' (index=4). <---> Output : variable 'log_ptB' (index=4).
--- Norm : Input : variable 'log_IPs' (index=5). <---> Output : variable 'log_IPs' (index=5).
--- Norm : Input : variable 'partlcs' (index=6). <---> Output : variable 'partlcs' (index=6).
--- Norm : Input : variable 'PIDNNk' (index=7). <---> Output : variable 'PIDNNk' (index=7).
--- Norm : Input : variable 'PIDNNpi' (index=8). <---> Output : variable 'PIDNNpi' (index=8).
--- Norm : Input : variable 'PIDNNp' (index=9). <---> Output : variable 'PIDNNp' (index=9).
--- Norm : Input : variable 'ghostProb' (index=10). <---> Output : variable 'ghostProb' (index=10).
--- Norm : Input : variable 'log_IPPU' (index=11). <---> Output : variable 'log_IPPU' (index=11).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.51598 0.22415 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partPt: -0.27038 0.29437 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partP: -0.16354 0.31476 [ -1.0000 1.0000 ]
--- TFHandler_Factory : nnkrec: -0.57206 0.21606 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.34107 0.16899 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPs: -0.33381 0.39984 [ -1.0000 1.0000 ]
--- TFHandler_Factory : partlcs: -0.21200 0.21801 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNk: 0.19051 0.25417 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNpi: -0.20999 0.24513 [ -1.0000 1.0000 ]
--- TFHandler_Factory : PIDNNp: -0.32562 0.20829 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ghostProb: -0.49164 0.19077 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPPU: 0.085178 0.46772 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpSK2A82/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: 1 : PIDNNk : 6.769e-03
--- Id_Deco_NormTransforma...: 2 : ghostProb : 4.277e-03
--- Id_Deco_NormTransforma...: 3 : log_partP : 3.752e-03
--- Id_Deco_NormTransforma...: 4 : log_IPs : 3.363e-03
--- Id_Deco_NormTransforma...: 5 : PIDNNpi : 3.118e-03
--- Id_Deco_NormTransforma...: 6 : log_partPt : 2.600e-03
--- Id_Deco_NormTransforma...: 7 : mult : 2.364e-03
--- Id_Deco_NormTransforma...: 8 : PIDNNp : 1.945e-03
--- Id_Deco_NormTransforma...: 9 : log_IPPU : 1.439e-03
--- Id_Deco_NormTransforma...: 10 : nnkrec : 1.274e-03
--- Id_Deco_NormTransforma...: 11 : partlcs : 1.221e-03
--- Id_Deco_NormTransforma...: 12 : log_ptB : 3.408e-04
--- Id_Deco_NormTransforma...: -----------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 17 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 2 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
Error in <TDecompLU::InvertLU>: matrix is singular, 1 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=1.37823 testE=1.37848
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 132211 events: 1.35e+03 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (132211 events)
--- REP_Estimator : Elapsed time for evaluation of 132211 events: 0.39 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpSK2A82/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : -----------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : -----------------------------------
--- REP_Estimator : 1 : mult : 2.925e+04
--- REP_Estimator : 2 : log_IPPU : 5.348e+02
--- REP_Estimator : 3 : log_partP : 2.194e+02
--- REP_Estimator : 4 : log_IPs : 1.543e+02
--- REP_Estimator : 5 : nnkrec : 1.046e+02
--- REP_Estimator : 6 : log_ptB : 4.242e+01
--- REP_Estimator : 7 : partlcs : 2.127e+01
--- REP_Estimator : 8 : PIDNNk : 9.335e+00
--- REP_Estimator : 9 : log_partPt : 5.213e+00
--- REP_Estimator : 10 : PIDNNpi : 1.035e+00
--- REP_Estimator : 11 : PIDNNp : 3.427e-01
--- REP_Estimator : 12 : ghostProb : 1.271e-01
--- REP_Estimator : -----------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Signal" with internal class number 0
--- DataSetInfo : Added class "Background" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 10037 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 10037 events
--- Factory : Add Tree TrainAssignTree_Background of type Background with 5023 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 5023 events
--- DataSetInfo : Class index : 0 name : Signal
--- DataSetInfo : Class index : 1 name : Background
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Signal -- number of events : 20074 / sum of weights: 20074
--- DataSetFactory : Background -- number of events : 10046 / sum of weights: 10046
--- DataSetFactory : Signal tree -- total number of entries: 20074
--- DataSetFactory : Background tree -- total number of entries: 10046
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 20074 / sum of weights: 20074
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 10046 / sum of weights: 10046
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Signal event weights by factor: 1
--- DataSetFactory : --> Rescale Background event weights by factor: 1.99821
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Signal -- training events : 10037 (sum of weights: 10037) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 10037 (sum of weights: 10037) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 20074 (sum of weights: 20074)
--- DataSetFactory : Background -- training events : 5023 (sum of weights: 10037) - requested were 0 events
--- DataSetFactory : Background -- testing events : 5023 (sum of weights: 5023) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 10046 (sum of weights: 15060)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs log_eOverP ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.019 +0.035 +0.070 +0.062 +0.105 +0.080 +0.121 -0.054
--- DataSetInfo : log_partPt: +0.019 +1.000 +0.559 +0.048 -0.029 -0.068 -0.041 -0.079 +0.092
--- DataSetInfo : log_partP: +0.035 +0.559 +1.000 +0.027 -0.123 +0.053 -0.025 +0.129 -0.117
--- DataSetInfo : log_ptB: +0.070 +0.048 +0.027 +1.000 +0.009 +0.009 +0.014 +0.017 +0.000
--- DataSetInfo : log_IPs: +0.062 -0.029 -0.123 +0.009 +1.000 -0.007 +0.005 -0.010 -0.026
--- DataSetInfo : partlcs: +0.105 -0.068 +0.053 +0.009 -0.007 +1.000 +0.014 +0.738 -0.104
--- DataSetInfo : log_eOverP: +0.080 -0.041 -0.025 +0.014 +0.005 +0.014 +1.000 +0.020 -0.066
--- DataSetInfo : ghostProb: +0.121 -0.079 +0.129 +0.017 -0.010 +0.738 +0.020 +1.000 -0.147
--- DataSetInfo : log_IPPU: -0.054 +0.092 -0.117 +0.000 -0.026 -0.104 -0.066 -0.147 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs log_eOverP ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 -0.007 +0.040 +0.069 +0.020 +0.123 +0.119 +0.133 -0.047
--- DataSetInfo : log_partPt: -0.007 +1.000 +0.529 +0.073 +0.050 -0.050 -0.068 -0.067 +0.094
--- DataSetInfo : log_partP: +0.040 +0.529 +1.000 +0.052 -0.118 +0.091 -0.032 +0.177 -0.141
--- DataSetInfo : log_ptB: +0.069 +0.073 +0.052 +1.000 -0.005 +0.028 +0.020 +0.033 -0.010
--- DataSetInfo : log_IPs: +0.020 +0.050 -0.118 -0.005 +1.000 -0.027 -0.038 -0.041 -0.049
--- DataSetInfo : partlcs: +0.123 -0.050 +0.091 +0.028 -0.027 +1.000 +0.026 +0.747 -0.093
--- DataSetInfo : log_eOverP: +0.119 -0.068 -0.032 +0.020 -0.038 +0.026 +1.000 +0.017 -0.070
--- DataSetInfo : ghostProb: +0.133 -0.067 +0.177 +0.033 -0.041 +0.747 +0.017 +1.000 -0.146
--- DataSetInfo : log_IPPU: -0.047 +0.094 -0.141 -0.010 -0.049 -0.093 -0.070 -0.146 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Id : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Id : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Id : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Id : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Id : Input : variable 'log_eOverP' (index=6). <---> Output : variable 'log_eOverP' (index=6).
--- Id : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Id : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Deco : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Deco : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Deco : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Deco : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Deco : Input : variable 'log_eOverP' (index=6). <---> Output : variable 'log_eOverP' (index=6).
--- Deco : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Deco : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Norm : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Norm : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Norm : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Norm : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Norm : Input : variable 'log_eOverP' (index=6). <---> Output : variable 'log_eOverP' (index=6).
--- Norm : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Norm : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.51515 0.23407 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partPt: -0.25024 0.31504 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partP: -0.087827 0.34366 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.30190 0.20880 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPs: -0.41874 0.31998 [ -1.0000 1.0000 ]
--- TFHandler_Factory : partlcs: -0.32685 0.29081 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_eOverP: -0.44282 0.21791 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ghostProb: -0.43392 0.17059 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPPU: 0.045153 0.53188 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpaTvBUn/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: 1 : log_partPt : 1.621e-02
--- Id_Deco_NormTransforma...: 2 : mult : 5.223e-03
--- Id_Deco_NormTransforma...: 3 : log_IPs : 4.948e-03
--- Id_Deco_NormTransforma...: 4 : log_IPPU : 4.804e-03
--- Id_Deco_NormTransforma...: 5 : log_eOverP : 4.710e-03
--- Id_Deco_NormTransforma...: 6 : log_partP : 4.247e-03
--- Id_Deco_NormTransforma...: 7 : ghostProb : 4.118e-03
--- Id_Deco_NormTransforma...: 8 : log_ptB : 3.144e-03
--- Id_Deco_NormTransforma...: 9 : partlcs : 2.761e-03
--- Id_Deco_NormTransforma...: -----------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 2 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=0.24448 testE=0.244597
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 15060 events: 156 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (15060 events)
--- REP_Estimator : Elapsed time for evaluation of 15060 events: 0.118 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpaTvBUn/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : -----------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : -----------------------------------
--- REP_Estimator : 1 : mult : 1.878e+04
--- REP_Estimator : 2 : log_IPPU : 2.941e+02
--- REP_Estimator : 3 : log_IPs : 1.217e+02
--- REP_Estimator : 4 : log_partP : 9.492e+01
--- REP_Estimator : 5 : log_ptB : 5.821e+01
--- REP_Estimator : 6 : partlcs : 2.584e+01
--- REP_Estimator : 7 : log_partPt : 9.020e+00
--- REP_Estimator : 8 : log_eOverP : 2.041e-01
--- REP_Estimator : 9 : ghostProb : 4.910e-02
--- REP_Estimator : -----------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
#error "You need a ISO C conforming compiler to use the glibc headers"
*** Interpreter error recovered ***
--- Factory : You are running ROOT Version: 5.34/32, Jun 23, 2015
--- Factory :
--- Factory : _/_/_/_/_/ _| _| _| _| _|_|
--- Factory : _/ _|_| _|_| _| _| _| _|
--- Factory : _/ _| _| _| _| _| _|_|_|_|
--- Factory : _/ _| _| _| _| _| _|
--- Factory : _/ _| _| _| _| _|
--- Factory :
--- Factory : ___________TMVA Version 4.2.0, Sep 19, 2013
--- Factory :
--- DataSetInfo : Added class "Background" with internal class number 0
--- DataSetInfo : Added class "Signal" with internal class number 1
--- Factory : Add Tree TrainAssignTree_Background of type Background with 5078 events
--- Factory : Add Tree TestAssignTree_Background of type Background with 5078 events
--- Factory : Add Tree TrainAssignTree_Signal of type Signal with 9983 events
--- Factory : Add Tree TestAssignTree_Signal of type Signal with 9983 events
--- DataSetInfo : Class index : 0 name : Background
--- DataSetInfo : Class index : 1 name : Signal
--- Factory : Booking method: REP_Estimator
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights
--- DataSetFactory : Splitmode is: "RANDOM" the mixmode is: "SAMEASSPLITMODE"
--- DataSetFactory : Create training and testing trees -- looping over class "Background" ...
--- DataSetFactory : Weight expression for class 'Background': "weight"
--- DataSetFactory : Create training and testing trees -- looping over class "Signal" ...
--- DataSetFactory : Weight expression for class 'Signal': "weight"
--- DataSetFactory : Number of events in input trees (after possible flattening of arrays):
--- DataSetFactory : Background -- number of events : 10156 / sum of weights: 10156
--- DataSetFactory : Signal -- number of events : 19966 / sum of weights: 19966
--- DataSetFactory : Background tree -- total number of entries: 10156
--- DataSetFactory : Signal tree -- total number of entries: 19966
--- DataSetFactory : Preselection: (will NOT affect number of requested training and testing events)
--- DataSetFactory : Background requirement: "1"
--- DataSetFactory : Background -- number of events passed: 10156 / sum of weights: 10156
--- DataSetFactory : Background -- efficiency : 1
--- DataSetFactory : Signal requirement: "1"
--- DataSetFactory : Signal -- number of events passed: 19966 / sum of weights: 19966
--- DataSetFactory : Signal -- efficiency : 1
--- DataSetFactory : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
--- DataSetFactory : such that the effective (weighted) number of events in each class is the same
--- DataSetFactory : (and equals the number of events (entries) given for class=0 )
--- DataSetFactory : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
--- DataSetFactory : ... (note that N_j is the sum of TRAINING events
--- DataSetFactory : ..... Testing events are not renormalised nor included in the renormalisation factor!)
--- DataSetFactory : --> Rescale Background event weights by factor: 1
--- DataSetFactory : --> Rescale Signal event weights by factor: 0.508665
--- DataSetFactory : Number of training and testing events after rescaling:
--- DataSetFactory : ------------------------------------------------------
--- DataSetFactory : Background -- training events : 5078 (sum of weights: 5078) - requested were 0 events
--- DataSetFactory : Background -- testing events : 5078 (sum of weights: 5078) - requested were 0 events
--- DataSetFactory : Background -- training and testing events: 10156 (sum of weights: 10156)
--- DataSetFactory : Signal -- training events : 9983 (sum of weights: 5078) - requested were 0 events
--- DataSetFactory : Signal -- testing events : 9983 (sum of weights: 9983) - requested were 0 events
--- DataSetFactory : Signal -- training and testing events: 19966 (sum of weights: 15061)
--- DataSetFactory : Create internal training tree
--- DataSetFactory : Create internal testing tree
--- DataSetInfo : Correlation matrix (Background):
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs log_eOverP ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 -0.020 +0.027 +0.063 +0.042 +0.101 +0.092 +0.116 -0.071
--- DataSetInfo : log_partPt: -0.020 +1.000 +0.515 +0.036 +0.054 -0.069 -0.056 -0.087 +0.068
--- DataSetInfo : log_partP: +0.027 +0.515 +1.000 +0.040 -0.119 +0.086 -0.006 +0.163 -0.163
--- DataSetInfo : log_ptB: +0.063 +0.036 +0.040 +1.000 +0.015 +0.020 +0.022 +0.008 +0.010
--- DataSetInfo : log_IPs: +0.042 +0.054 -0.119 +0.015 +1.000 -0.027 -0.015 -0.012 -0.054
--- DataSetInfo : partlcs: +0.101 -0.069 +0.086 +0.020 -0.027 +1.000 +0.011 +0.731 -0.104
--- DataSetInfo : log_eOverP: +0.092 -0.056 -0.006 +0.022 -0.015 +0.011 +1.000 +0.023 -0.077
--- DataSetInfo : ghostProb: +0.116 -0.087 +0.163 +0.008 -0.012 +0.731 +0.023 +1.000 -0.150
--- DataSetInfo : log_IPPU: -0.071 +0.068 -0.163 +0.010 -0.054 -0.104 -0.077 -0.150 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetInfo : Correlation matrix (Signal):
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetInfo : mult log_partPt log_partP log_ptB log_IPs partlcs log_eOverP ghostProb log_IPPU
--- DataSetInfo : mult: +1.000 +0.011 +0.019 +0.065 +0.055 +0.068 +0.069 +0.086 -0.031
--- DataSetInfo : log_partPt: +0.011 +1.000 +0.568 +0.042 -0.024 -0.054 -0.054 -0.066 +0.075
--- DataSetInfo : log_partP: +0.019 +0.568 +1.000 +0.012 -0.139 +0.058 -0.036 +0.138 -0.118
--- DataSetInfo : log_ptB: +0.065 +0.042 +0.012 +1.000 +0.005 +0.004 +0.005 -0.003 -0.002
--- DataSetInfo : log_IPs: +0.055 -0.024 -0.139 +0.005 +1.000 +0.001 -0.007 -0.015 -0.023
--- DataSetInfo : partlcs: +0.068 -0.054 +0.058 +0.004 +0.001 +1.000 +0.005 +0.728 -0.102
--- DataSetInfo : log_eOverP: +0.069 -0.054 -0.036 +0.005 -0.007 +0.005 +1.000 -0.003 -0.066
--- DataSetInfo : ghostProb: +0.086 -0.066 +0.138 -0.003 -0.015 +0.728 -0.003 +1.000 -0.131
--- DataSetInfo : log_IPPU: -0.031 +0.075 -0.118 -0.002 -0.023 -0.102 -0.066 -0.131 +1.000
--- DataSetInfo : ----------------------------------------------------------------------------------------------
--- DataSetFactory :
--- Factory :
--- Factory : current transformation string: 'I,D,N'
--- Factory : Create Transformation "I" with events from all classes.
--- Id : Transformation, Variable selection :
--- Id : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Id : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Id : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Id : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Id : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Id : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Id : Input : variable 'log_eOverP' (index=6). <---> Output : variable 'log_eOverP' (index=6).
--- Id : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Id : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "D" with events from all classes.
--- Deco : Transformation, Variable selection :
--- Deco : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Deco : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Deco : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Deco : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Deco : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Deco : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Deco : Input : variable 'log_eOverP' (index=6). <---> Output : variable 'log_eOverP' (index=6).
--- Deco : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Deco : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Factory : Create Transformation "N" with events from all classes.
--- Norm : Transformation, Variable selection :
--- Norm : Input : variable 'mult' (index=0). <---> Output : variable 'mult' (index=0).
--- Norm : Input : variable 'log_partPt' (index=1). <---> Output : variable 'log_partPt' (index=1).
--- Norm : Input : variable 'log_partP' (index=2). <---> Output : variable 'log_partP' (index=2).
--- Norm : Input : variable 'log_ptB' (index=3). <---> Output : variable 'log_ptB' (index=3).
--- Norm : Input : variable 'log_IPs' (index=4). <---> Output : variable 'log_IPs' (index=4).
--- Norm : Input : variable 'partlcs' (index=5). <---> Output : variable 'partlcs' (index=5).
--- Norm : Input : variable 'log_eOverP' (index=6). <---> Output : variable 'log_eOverP' (index=6).
--- Norm : Input : variable 'ghostProb' (index=7). <---> Output : variable 'ghostProb' (index=7).
--- Norm : Input : variable 'log_IPPU' (index=8). <---> Output : variable 'log_IPPU' (index=8).
--- Id : Preparing the Identity transformation...
--- Deco : Preparing the Decorrelation transformation...
--- Norm : Preparing the transformation.
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Variable Mean RMS [ Min Max ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : mult: -0.51917 0.23191 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partPt: -0.23983 0.31428 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_partP: -0.10056 0.35451 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_ptB: 0.29710 0.23392 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPs: -0.39585 0.33462 [ -1.0000 1.0000 ]
--- TFHandler_Factory : partlcs: -0.37139 0.28668 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_eOverP: -0.43432 0.21892 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ghostProb: -0.47080 0.15096 [ -1.0000 1.0000 ]
--- TFHandler_Factory : log_IPPU: 0.063401 0.53029 [ -1.0000 1.0000 ]
--- TFHandler_Factory : ---------------------------------------------------------------------
--- TFHandler_Factory : Plot event variables for Id_Deco_Norm
--- TFHandler_Factory : Create scatter and profile plots in target-file directory:
--- TFHandler_Factory : /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpHXVRWP/result.root:/InputVariables_Id_Deco_Norm/CorrelationPlots
--- TFHandler_Factory :
--- TFHandler_Factory : Ranking input variables (method unspecific)...
--- Id_Deco_NormTransforma...: Ranking result (top variable is best ranked)
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: Rank : Variable : Separation
--- Id_Deco_NormTransforma...: -----------------------------------
--- Id_Deco_NormTransforma...: 1 : log_partPt : 1.795e-02
--- Id_Deco_NormTransforma...: 2 : log_eOverP : 7.685e-03
--- Id_Deco_NormTransforma...: 3 : log_IPs : 6.194e-03
--- Id_Deco_NormTransforma...: 4 : log_IPPU : 5.758e-03
--- Id_Deco_NormTransforma...: 5 : log_partP : 4.685e-03
--- Id_Deco_NormTransforma...: 6 : partlcs : 4.487e-03
--- Id_Deco_NormTransforma...: 7 : mult : 4.272e-03
--- Id_Deco_NormTransforma...: 8 : ghostProb : 3.643e-03
--- Id_Deco_NormTransforma...: 9 : log_ptB : 2.835e-03
--- Id_Deco_NormTransforma...: -----------------------------------
--- Factory :
--- Factory : Train all methods for Classification ...
--- Factory : Train method: REP_Estimator for Classification
--- REP_Estimator : Begin training
--- REP_Estimator : Training Network
Error in <TDecompLU::InvertLU>: matrix is singular, 3 diag elements < tolerance of 2.2204e-16
--- REP_Estimator : Finalizing handling of Regulator terms, trainE=0.245612 testE=0.245644
--- REP_Estimator : Done with handling of Regulator terms
--- REP_Estimator : End of training
--- REP_Estimator : Elapsed time for training with 15061 events: 161 sec
--- REP_Estimator : Create MVA output for classification on training sample
--- REP_Estimator : Evaluation of REP_Estimator on training sample (15061 events)
--- REP_Estimator : Elapsed time for evaluation of 15061 events: 0.118 sec
--- REP_Estimator : Creating weight file in xml format: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Creating standalone response class: weights/TMVAEstimation_REP_Estimator.class.C
--- REP_Estimator : Write special histos to file: /mnt/mfs/notebook/analyses/tagging_LHCb/MC/tmpHXVRWP/result.root:/Method_MLP/REP_Estimator
--- Factory : Training finished
--- Factory :
--- Factory : Ranking input variables (method specific)...
--- REP_Estimator : Ranking result (top variable is best ranked)
--- REP_Estimator : -----------------------------------
--- REP_Estimator : Rank : Variable : Importance
--- REP_Estimator : -----------------------------------
--- REP_Estimator : 1 : mult : 1.838e+04
--- REP_Estimator : 2 : log_IPPU : 1.646e+02
--- REP_Estimator : 3 : log_partP : 1.016e+02
--- REP_Estimator : 4 : log_IPs : 1.001e+02
--- REP_Estimator : 5 : log_ptB : 4.742e+01
--- REP_Estimator : 6 : partlcs : 2.508e+01
--- REP_Estimator : 7 : log_partPt : 9.041e+00
--- REP_Estimator : 8 : log_eOverP : 1.904e-01
--- REP_Estimator : 9 : ghostProb : 4.798e-02
--- REP_Estimator : -----------------------------------
--- Factory :
--- Factory : === Destroy and recreate all methods via weight files for testing ===
--- Factory :
--- MethodBase : Reading weight file: weights/TMVAEstimation_REP_Estimator.weights.xml
--- REP_Estimator : Read method "REP_Estimator" of type "MLP"
--- REP_Estimator : MVA method was trained with TMVA Version: 4.2.0
--- REP_Estimator : MVA method was trained with ROOT Version: 5.34/32
--- REP_Estimator : Building Network
--- REP_Estimator : Initializing weights