In [1]:
    
from __future__ import division
import numpy as np
import scipy.linalg as lin
import pylab as pl
from locore.identifiability import crit_l1_synthesis
    
Dimension of the problem
In [2]:
    
n = 100
p = n // 4
    
Random matrix forward operator
In [3]:
    
A = np.random.randn(p, n)
    
Generate a sparse vector
In [4]:
    
x = np.zeros((n,1))
x[2] = 1
x[8] = 1
    
Compute IC for this vector
In [5]:
    
crit_l1_synthesis(A, x)
    
    Out[5]: