In [48]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from IPython.display import display
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [76]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
a = np.array()
np.argmax(a)
np.argmax(a)
return()
In [77]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [13]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [24]:
n= np.fromstring(pi_digits_str, np.dtype(int))
n
Out[24]:
In [25]:
np.argmax(n)
Out[25]:
In [26]:
np.diff(n)
Out[26]:
In [54]:
plt.hist(np.histogram(n))
plt.title('Distribution of local max. in $\pi$');
In [ ]:
assert True # use this for grading the pi digits histogram