--------------------------------------------------
Iteration 1
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 46s - loss: 1.6038 - acc: 0.4012 - val_loss: 1.5121 - val_acc: 0.4376
Q 735+8
T 743
☒ 839
---
Q 789+70
T 859
☒ 808
---
Q 46+373
T 419
☒ 499
---
Q 872+902
T 1774
☒ 1710
---
Q 191+9
T 200
☒ 110
---
Q 38+900
T 938
☒ 900
---
Q 621+9
T 630
☒ 129
---
Q 616+73
T 689
☒ 789
---
Q 834+74
T 908
☒ 801
---
Q 783+28
T 811
☒ 801
---
--------------------------------------------------
Iteration 2
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 43s - loss: 1.4134 - acc: 0.4756 - val_loss: 1.3410 - val_acc: 0.4965
Q 553+92
T 645
☒ 666
---
Q 449+16
T 465
☒ 454
---
Q 878+96
T 974
☒ 886
---
Q 263+8
T 271
☒ 286
---
Q 44+87
T 131
☒ 141
---
Q 85+853
T 938
☒ 949
---
Q 36+735
T 771
☒ 744
---
Q 381+54
T 435
☒ 499
---
Q 3+951
T 954
☒ 944
---
Q 875+500
T 1375
☒ 1268
---
--------------------------------------------------
Iteration 3
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 40s - loss: 1.2506 - acc: 0.5389 - val_loss: 1.1851 - val_acc: 0.5681
Q 525+622
T 1147
☒ 1164
---
Q 64+807
T 871
☒ 860
---
Q 60+892
T 952
☒ 900
---
Q 985+2
T 987
☒ 990
---
Q 191+840
T 1031
☒ 1009
---
Q 295+67
T 362
☒ 355
---
Q 8+622
T 630
☒ 634
---
Q 50+63
T 113
☒ 101
---
Q 711+48
T 759
☒ 764
---
Q 660+27
T 687
☒ 673
---
--------------------------------------------------
Iteration 4
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 43s - loss: 1.1156 - acc: 0.5934 - val_loss: 1.0566 - val_acc: 0.6168
Q 92+405
T 497
☒ 402
---
Q 7+680
T 687
☒ 685
---
Q 815+80
T 895
☒ 896
---
Q 517+0
T 517
☒ 510
---
Q 3+371
T 374
☑ 374
---
Q 920+68
T 988
☒ 980
---
Q 176+726
T 902
☒ 901
---
Q 880+560
T 1440
☒ 1457
---
Q 153+710
T 863
☒ 805
---
Q 589+20
T 609
☒ 601
---
--------------------------------------------------
Iteration 5
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 40s - loss: 0.9861 - acc: 0.6427 - val_loss: 0.9210 - val_acc: 0.6675
Q 711+351
T 1062
☒ 1043
---
Q 378+9
T 387
☒ 396
---
Q 613+1
T 614
☒ 615
---
Q 215+540
T 755
☒ 754
---
Q 2+233
T 235
☑ 235
---
Q 910+78
T 988
☑ 988
---
Q 4+198
T 202
☒ 200
---
Q 435+73
T 508
☑ 508
---
Q 898+4
T 902
☒ 901
---
Q 951+709
T 1660
☒ 1602
---
--------------------------------------------------
Iteration 6
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 40s - loss: 0.7951 - acc: 0.7114 - val_loss: 0.6767 - val_acc: 0.7600
Q 155+0
T 155
☑ 155
---
Q 993+435
T 1428
☒ 1438
---
Q 330+214
T 544
☑ 544
---
Q 513+472
T 985
☒ 996
---
Q 50+938
T 988
☒ 999
---
Q 71+384
T 455
☑ 455
---
Q 603+6
T 609
☒ 619
---
Q 136+22
T 158
☑ 158
---
Q 962+396
T 1358
☑ 1358
---
Q 786+573
T 1359
☒ 1358
---
--------------------------------------------------
Iteration 7
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 40s - loss: 0.5704 - acc: 0.8093 - val_loss: 0.4900 - val_acc: 0.8495
Q 18+655
T 673
☑ 673
---
Q 204+657
T 861
☒ 871
---
Q 5+340
T 345
☑ 345
---
Q 588+49
T 637
☑ 637
---
Q 307+872
T 1179
☒ 1189
---
Q 657+458
T 1115
☑ 1115
---
Q 519+69
T 588
☒ 587
---
Q 289+990
T 1279
☒ 1299
---
Q 227+3
T 230
☑ 230
---
Q 603+675
T 1278
☑ 1278
---
--------------------------------------------------
Iteration 8
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 41s - loss: 0.4116 - acc: 0.8828 - val_loss: 0.3778 - val_acc: 0.8882
Q 0+263
T 263
☒ 264
---
Q 260+17
T 277
☑ 277
---
Q 739+513
T 1252
☒ 1251
---
Q 5+543
T 548
☒ 549
---
Q 484+397
T 881
☒ 860
---
Q 67+845
T 912
☑ 912
---
Q 71+47
T 118
☑ 118
---
Q 470+580
T 1050
☒ 1040
---
Q 930+2
T 932
☑ 932
---
Q 553+71
T 624
☒ 625
---
--------------------------------------------------
Iteration 9
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 40s - loss: 0.3035 - acc: 0.9260 - val_loss: 0.2654 - val_acc: 0.9378
Q 91+102
T 193
☑ 193
---
Q 307+451
T 758
☑ 758
---
Q 457+23
T 480
☑ 480
---
Q 622+2
T 624
☑ 624
---
Q 87+584
T 671
☑ 671
---
Q 32+165
T 197
☒ 297
---
Q 835+7
T 842
☑ 842
---
Q 295+86
T 381
☑ 381
---
Q 117+32
T 149
☑ 149
---
Q 5+840
T 845
☑ 845
---
--------------------------------------------------
Iteration 10
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 38s - loss: 0.2308 - acc: 0.9488 - val_loss: 0.2142 - val_acc: 0.9471
Q 8+515
T 523
☑ 523
---
Q 95+823
T 918
☑ 918
---
Q 755+60
T 815
☑ 815
---
Q 151+475
T 626
☑ 626
---
Q 15+752
T 767
☑ 767
---
Q 20+622
T 642
☑ 642
---
Q 5+340
T 345
☑ 345
---
Q 652+121
T 773
☒ 763
---
Q 478+839
T 1317
☒ 1206
---
Q 70+508
T 578
☑ 578
---
--------------------------------------------------
Iteration 11
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 39s - loss: 0.1761 - acc: 0.9648 - val_loss: 0.1703 - val_acc: 0.9625
Q 494+815
T 1309
☑ 1309
---
Q 506+75
T 581
☑ 581
---
Q 198+258
T 456
☒ 446
---
Q 30+46
T 76
☑ 76
---
Q 976+2
T 978
☑ 978
---
Q 758+76
T 834
☑ 834
---
Q 7+376
T 383
☑ 383
---
Q 722+70
T 792
☑ 792
---
Q 277+56
T 333
☑ 333
---
Q 263+8
T 271
☑ 271
---
--------------------------------------------------
Iteration 12
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 39s - loss: 0.1383 - acc: 0.9739 - val_loss: 0.1368 - val_acc: 0.9712
Q 934+103
T 1037
☒ 1047
---
Q 58+942
T 1000
☑ 1000
---
Q 333+75
T 408
☑ 408
---
Q 3+3
T 6
☒ 4
---
Q 90+37
T 127
☑ 127
---
Q 6+117
T 123
☑ 123
---
Q 408+813
T 1221
☑ 1221
---
Q 467+6
T 473
☑ 473
---
Q 444+825
T 1269
☑ 1269
---
Q 600+764
T 1364
☑ 1364
---
--------------------------------------------------
Iteration 13
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 39s - loss: 0.1232 - acc: 0.9743 - val_loss: 0.1151 - val_acc: 0.9758
Q 10+40
T 50
☑ 50
---
Q 489+66
T 555
☑ 555
---
Q 546+67
T 613
☑ 613
---
Q 41+111
T 152
☑ 152
---
Q 95+523
T 618
☑ 618
---
Q 121+55
T 176
☑ 176
---
Q 282+10
T 292
☑ 292
---
Q 47+499
T 546
☒ 545
---
Q 247+8
T 255
☑ 255
---
Q 885+83
T 968
☑ 968
---
--------------------------------------------------
Iteration 14
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 39s - loss: 0.0863 - acc: 0.9862 - val_loss: 0.0857 - val_acc: 0.9839
Q 165+521
T 686
☑ 686
---
Q 23+993
T 1016
☑ 1016
---
Q 57+45
T 102
☑ 102
---
Q 577+467
T 1044
☑ 1044
---
Q 37+903
T 940
☑ 940
---
Q 711+48
T 759
☑ 759
---
Q 516+296
T 812
☑ 812
---
Q 8+567
T 575
☑ 575
---
Q 73+668
T 741
☑ 741
---
Q 129+389
T 518
☑ 518
---
--------------------------------------------------
Iteration 15
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 45s - loss: 0.0764 - acc: 0.9870 - val_loss: 0.0810 - val_acc: 0.9832
Q 569+841
T 1410
☑ 1410
---
Q 381+54
T 435
☑ 435
---
Q 502+87
T 589
☑ 589
---
Q 749+29
T 778
☑ 778
---
Q 6+138
T 144
☑ 144
---
Q 29+999
T 1028
☑ 1028
---
Q 341+899
T 1240
☑ 1240
---
Q 4+990
T 994
☒ 993
---
Q 0+476
T 476
☑ 476
---
Q 949+89
T 1038
☑ 1038
---
--------------------------------------------------
Iteration 16
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
13056/45000 [=======>......................] - ETA: 33s - loss: 0.0677 - acc: 0.9878
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-17-49d6041109fa> in <module>()
6 print('Iteration', iteration)
7 model.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=1,
----> 8 validation_data=(X_val, y_val))
9 ###
10 # Select 10 samples from the validation set at random so we can visualize errors
/Users/taylor/anaconda3/lib/python3.5/site-packages/keras/models.py in fit(self, x, y, batch_size, nb_epoch, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, **kwargs)
395 shuffle=shuffle,
396 class_weight=class_weight,
--> 397 sample_weight=sample_weight)
398
399 def evaluate(self, x, y, batch_size=32, verbose=1,
/Users/taylor/anaconda3/lib/python3.5/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, nb_epoch, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight)
1009 verbose=verbose, callbacks=callbacks,
1010 val_f=val_f, val_ins=val_ins, shuffle=shuffle,
-> 1011 callback_metrics=callback_metrics)
1012
1013 def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
/Users/taylor/anaconda3/lib/python3.5/site-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, nb_epoch, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics)
747 batch_logs['size'] = len(batch_ids)
748 callbacks.on_batch_begin(batch_index, batch_logs)
--> 749 outs = f(ins_batch)
750 if type(outs) != list:
751 outs = [outs]
/Users/taylor/anaconda3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
579 feed_dict = dict(zip(names, inputs))
580 session = get_session()
--> 581 updated = session.run(self.outputs + self.updates, feed_dict=feed_dict)
582 return updated[:len(self.outputs)]
583
/Users/taylor/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict)
313 `Tensor` that doesn't exist.
314 """
--> 315 return self._run(None, fetches, feed_dict)
316
317 def partial_run(self, handle, fetches, feed_dict=None):
/Users/taylor/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict)
509 # Run request and get response.
510 results = self._do_run(handle, target_list, unique_fetches,
--> 511 feed_dict_string)
512
513 # User may have fetched the same tensor multiple times, but we
/Users/taylor/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict)
562 if handle is None:
563 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
--> 564 target_list)
565 else:
566 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/Users/taylor/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
569 def _do_call(self, fn, *args):
570 try:
--> 571 return fn(*args)
572 except tf_session.StatusNotOK as e:
573 e_type, e_value, e_traceback = sys.exc_info()
/Users/taylor/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list)
553 # Ensure any changes to the graph are reflected in the runtime.
554 self._extend_graph()
--> 555 return tf_session.TF_Run(session, feed_dict, fetch_list, target_list)
556
557 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: