Sample code for computing Performance Profiles for different methods on the Arcade Learning Environment.
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import betainc
In [2]:
def poor_man_welch_test(target_mean,target_std,target_n,comp_mean,comp_std,comp_n):
# Computes a Welch test to see if the comparitor sample is larger than the target
# sample. This is a one-sided test.
# This works from sufficient statistics alone, and that's because this is all that
# people report in their papers. I'm no more happy about this than you are.
nu = ((target_std**2/target_n + comp_std**2/comp_n)**2/
(target_std**4/target_n/(target_n-1)+ comp_std**4/comp_n/(comp_n-1)))
t_stat = ((target_mean-comp_mean)
/np.sqrt(target_std**2/target_n+comp_std**2/comp_n))
return 0.5*betainc(nu/2,1/2,nu/(t_stat**2+nu))
def optimality_deviation(data_means,data_std,data_n):
# compute the deviation from optimality as given by the log-likehood of a Welch t-test
num_prob, num_method = data_means.shape
likelihood = np.zeros((num_prob,num_method))
for prob in range(num_prob):
best_idx = np.argmax(data_means[prob,:])
# compute the Welsh t-test to determine the p-value associated
# with a method having mean higher than the observed highest reward
for method in range(num_method):
likelihood[prob,method] = -np.log10(poor_man_welch_test(
data_means[prob,best_idx],data_std[prob,best_idx],data_n[prob,best_idx],
data_means[prob,method],data_std[prob,method],data_n[prob,method]))
# denote the likelihood of the best observation as being 1. This is merely counting
# the number of times a method achieves the highest mean.
likelihood[prob,best_idx] = 0
return likelihood
def welch_t_perf_prof(data_means,data_std,data_n,data_names,tau_min=0.3,tau_max=3.0,npts=100):
num_prob, num_method = data_means.shape
rho = np.zeros((npts,num_method))
# This is the d[p,m] function discussed in the blog.
# For this post, I'm using the log-likelihood of the Welch t-test.
# But this is where you'd write whatever method you think would work better.
dist_like_fun = optimality_deviation(data_means,data_std,data_n)
# Compute the cumulative rates of the distance being less than a fixed threshold
tau = np.linspace(tau_min,tau_max,npts)
for method in range(num_method):
for k in range(npts):
rho[k,method] = np.sum(dist_like_fun[:,method]<tau[k])/num_prob
# make plot
colors = [ '#2D328F', '#F15C19',"#81b13c","#ca49ac","000000"]
label_fontsize = 18
tick_fontsize = 14
linewidth = 3
for method in range(num_method):
plt.plot(tau,rho[:,method],color=colors[method],linewidth=linewidth,label=data_names[method])
plt.xlabel(r'$-\log_{10}(\tau)$',fontsize=label_fontsize)
plt.ylabel(r'fraction with $p_{val} \geq \tau$',fontsize=label_fontsize)
plt.legend(fontsize=label_fontsize)
plt.xticks(fontsize=tick_fontsize)
plt.yticks(fontsize=tick_fontsize)
plt.grid(True)
plt.show()
The data comes from the Tables 8 and 9 from paper “Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents.” https://arxiv.org/abs/1709.06009
The DQN data is in this csv. The Blob-PROST data is in this csv.
In [3]:
blob_data = np.genfromtxt('blob.csv', delimiter=',')
dqn_data = np.genfromtxt('dqn.csv', delimiter=',')
In [4]:
data_means = np.vstack((blob_data[:,6],dqn_data[:,6])).T
data_std = np.vstack((blob_data[:,7],dqn_data[:,7])).T + 1.0e-6
data_n = np.tile(np.array([24,5]).T,[60,1])
data_names = ['blob-PROST 200M','DQN 200M']
welch_t_perf_prof(data_means,data_std,data_n,data_names)
In [5]:
data_means = np.vstack((blob_data[:,6],dqn_data[:,0])).T
data_std = np.vstack((blob_data[:,7],dqn_data[:,1])).T + 1.0e-6
data_n = np.tile(np.array([24,5]).T,[60,1])
data_names = ['blob-PROST 200M','DQN 10M']
welch_t_perf_prof(data_means,data_std,data_n,data_names)
In [6]:
data_means = np.vstack((blob_data[:,4],blob_data[:,6],dqn_data[:,4],dqn_data[:,6])).T
data_std = np.vstack((blob_data[:,5],blob_data[:,7],dqn_data[:,5],dqn_data[:,7])).T + 1.0e-6
data_n = np.tile(np.array([24,24,5,5]).T,[60,1])
data_names = ['blob-PROST 100M','blob-PROST 200M','DQN 100M','DQN 200M']
welch_t_perf_prof(data_means,data_std,data_n,data_names,tau_min=0.5,tau_max=3)
In [7]:
data_means = np.vstack((blob_data[:,4],dqn_data[:,4])).T
data_std = np.vstack((blob_data[:,5],dqn_data[:,5])).T + 1.0e-6
data_n = np.tile(np.array([24,5]).T,[60,1])
data_names = ['blob-PROST 100M','DQN 100M']
welch_t_perf_prof(data_means,data_std,data_n,data_names)