In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [2]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
# YOUR CODE HERE
r = []
for i in range(0, len(a)):
if (i == len(a)-1 or a[i]>a[i+1]) and a[i]>a[i-1]:
r.append(i)
return np.array(r)
In [3]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [4]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [5]:
# YOUR CODE HERE
h = pi_digits_str
p = []
for i in h:
p.append(int(i))
e = np.array(p)
g = find_peaks(e)
y = np.diff(g)
plt.hist(y, bins = 90)
plt.ylabel('minanma spacing')
plt.xlabel('minima')
Out[5]:
In [6]:
assert True # use this for grading the pi digits histogram
In [ ]:
In [ ]: