In [11]:
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
N = 100
G = 20
theta = 0.2
alpha = 0.95
C = np.zeros(N) # consumption
Y = np.zeros(N) # income
Y_d = np.zeros(N) # disposable income
T = np.zeros(N) # tax revenue
H_h = np.zeros(N) # private savings
H_g = np.zeros(N) # government debt
for t in range(0, N):
# calculate consumer spending
C[t] = alpha*Y_d[t-1]
# calculate total income (consumer spending plus constant government spending)
Y[t] = G + C[t]
# calculate the tax take
T[t] = theta * Y[t]
# calculate disposable income
Y_d[t] = Y[t] - T[t]
# calculate the change in private savings
H_h[t] = H_h[t-1] + (1-alpha)*Y_d[t-1]
# calculate the change in government debt
H_g[t] = H_g[t-1] + T[t]- G
In [13]:
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
N = 200
alpha = 0.95
C = np.zeros(N) # consumption
Y = np.zeros(N) # income
Y_d = np.zeros(N) # disposable income
T = np.zeros(N) # tax revenue
H_h = np.zeros(N) # private savings
H_g = np.zeros(N) # government debt
G = np.zeros(N)
theta = np.zeros(N)
G[0:75] = 20
G[75:] = 20
theta[0:75] = 0.2
theta[75:] = 0.2
for t in range(0, N):
# calculate consumer spending
C[t] = alpha*Y_d[t-1]
# calculate total income (consumer spending plus constant government spending)
Y[t] = G[t] + C[t]
# calculate the tax take
T[t] = theta[t] * Y[t]
# calculate disposable income
Y_d[t] = Y[t] - T[t]
# calculate the change in private savings
H_h[t] = H_h[t-1] + (1-alpha)*Y_d[t-1]
# calculate the change in government debt
H_g[t] = H_g[t-1] + T[t]- G[t]
In [14]:
fig = plt.figure(figsize=(12, 8))
consumption_plot = fig.add_subplot(241, xlim=(0, N), ylim=(0, np.max(Y)))
consumption_plot.plot(range(N), C, lw=3)
consumption_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('consumption')
gov_plot = fig.add_subplot(242, xlim=(0, N), ylim=(0, np.max(Y)))
gov_plot.plot(range(N), G, lw=3)
gov_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('government spending')
income_plot = fig.add_subplot(243, xlim=(0, N), ylim=(0, np.max(Y)))
income_plot.plot(range(N), Y, lw=3)
income_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('income')
savings_plot = fig.add_subplot(244, xlim=(0, N), ylim=(0, np.max(H_h)))
savings_plot.plot(range(N), H_h, lw=3)
savings_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('private savings')
gov_plot = fig.add_subplot(245, xlim=(0, N), ylim=(0, np.max(G)*1.5))
gov_plot.plot(range(N), G, lw=3)
gov_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('government spending')
tax_plot = fig.add_subplot(246, xlim=(0, N), ylim=(0, np.max(G)*1.5))
tax_plot.plot(range(N), T, lw=3)
tax_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('tax revenue')
deficit_plot = fig.add_subplot(247, xlim=(0, N), ylim=(np.min(T-G)*1.5,0))
deficit_plot.plot(range(N), T-G, lw=3)
deficit_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('government budget')
debt_plot = fig.add_subplot(248, xlim=(0, N), ylim=(np.min(H_g)*1.5,0))
debt_plot.plot(range(N), H_g, lw=3)
debt_plot.grid()
# label axes
plt.xlabel('time')
plt.ylabel('government debt')
# space subplots neatly
plt.tight_layout()
In [17]:
H_g[-1]+H_h[-1]
Out[17]:
In [5]:
G-T[-1]
Out[5]:
In [18]:
C[-1]
Out[18]:
By substituting equation 7 into equation 8 we get:
$$Y_{d}^* = Y^* - \theta Y^*$$which we can then substitue into equation 9:
$$C^* = \alpha (Y^* - \theta Y^*)$$and then back into equation 6:
$$Y^* = \alpha Y^* (1 - \theta) + G$$Rearranging this gives:
$$Y^* - \alpha Y^* (1 - \theta) = G$$$$Y^* - \alpha Y^* + \alpha Y^* \theta = G$$$$Y^* (1 - \alpha + \alpha \theta) = G$$Rearranging this gives: $$1 = \alpha (1 - \theta) + G/Y^*$$ $$1 - \alpha (1 - \theta) = G/Y^*$$
$$Y^* (1 - \alpha (1 - \theta)) = G$$$$ Y^* = \frac {G}{(1 - \alpha + \alpha \theta)} \hspace{1cm} (10)$$$$ \frac {Y^*}{G} = \frac {1}{(1 - \alpha + \alpha \theta)} \hspace{1cm} (11)$$
In [7]:
1/(1- alpha*(1 - theta))
Out[7]:
In [8]:
Y[-1]/G
Out[8]:
In [9]:
alpha
Out[9]:
In [10]:
G*(alpha*(1-theta)-1)
Out[10]:
We can solve this for either G or $\theta$
G in terms of nominal GDP and savings and taxation $$ G = Y^* (1 - \alpha + \alpha \theta) \hspace 1 cm (12)$$
G relative to Y $$ \frac {G}{Y^*} = 1 - \alpha + \alpha \theta \hspace 1 cm (13)$$
Tax rate in terms of nominal GDP $$ \theta = \frac {G}{\alpha Y^*} - \Big (\frac {1}{\alpha} - 1 \Big ) \hspace 1 cm (14)$$
so ratio of government spend to consumption minus an adjustment factor related to savings
In [12]:
G/(alpha*Y[-1]) - (1/alpha - 1)
Out[12]:
In [114]:
-1/alpha + 1
Out[114]:
In [121]:
alpha + theta - alpha*theta -1
Out[121]:
In [29]:
(T[-1] - 20)/Y[-]
Out[29]:
In [25]:
theta - G/Y[-1]
Out[25]:
In [ ]: