INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
INFO:neon.datasets.mnist:loading: train-images-idx3-ubyte
INFO:neon.datasets.mnist:loading: train-labels-idx1-ubyte
INFO:neon.datasets.mnist:loading: t10k-images-idx3-ubyte
INFO:neon.datasets.mnist:loading: t10k-labels-idx1-ubyte
WARNING:neon.datasets.dataset:Incompatible batch size. Discarding 16 samples...
WARNING:neon.datasets.dataset:Incompatible batch size. Discarding 96 samples...
WARNING:neon.datasets.dataset:Incompatible batch size. Discarding 16 samples...
WARNING:neon.datasets.dataset:Incompatible batch size. Discarding 96 samples...
INFO:neon.experiments.fit:Unable to find saved model /Users/arjun/data/MNIST/mnist-mlp.prm, starting over
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 0, training error: 1.98806
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 8.54367
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 7.92768
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 1, training error: 0.31793
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 3.93630
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 3.49225
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 2, training error: 0.22308
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 3.70593
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 2.94638
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 3, training error: 0.18462
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 3.24519
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 2.38048
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 4, training error: 0.13446
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 2.99479
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 1.82626
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 5, training error: 0.11090
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 2.78446
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 1.59923
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 6, training error: 0.09527
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 2.60417
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 1.36886
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 7, training error: 0.07803
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 2.73438
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 1.47403
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 8, training error: 0.07625
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 2.62420
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 1.19024
INFO:neon.backends:Cudanet backend, RNG seed: 0, numerr: None
INFO:neon.models.mlp:Layers:
DataLayer layer: 784 nodes
FCLayer layer: 784 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 200 nodes, RectLin act_fn
FCLayer layer: 200 inputs, 10 nodes, Logistic act_fn
CostLayer layer: 10 nodes, CrossEntropy cost_fn
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 784)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (200, 200)
INFO:neon.params.val_init:Generating GaussianValGen values of shape (10, 200)
WARNING:neon.util.persist:deserializing object from: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.models.mlp:commencing model fitting
INFO:neon.models.mlp:epoch: 9, training error: 0.06536
WARNING:neon.util.persist:serializing object to: /Users/arjun/data/MNIST/mnist-mlp.prm
INFO:neon.experiments.fit_predict_err:test set MisclassPercentage_TOP_1 2.57412
INFO:neon.experiments.fit_predict_err:train set MisclassPercentage_TOP_1 1.23698