imports


In [1]:
%load_ext autoreload
%autoreload 2
%matplotlib inline

In [3]:
from fastai.imports import *
from fastai.structured import *

import time
from gplearn.genetic import SymbolicTransformer
from pandas_summary import DataFrameSummary
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from IPython.display import display
import xgboost as xgb
import lightgbm as lgb
from catboost import CatBoostClassifier
import gc
from scipy.cluster import hierarchy as hc
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import  roc_auc_score, log_loss
from sklearn.model_selection import StratifiedKFold

def ignore_warn(*args, **kwargs):
    pass
warnings.warn = ignore_warn

#will ignore all warning from sklearn, seaborn etc..

In [4]:
PATH = os.getcwd();
PATH


Out[4]:
'D:\\Github\\fastai\\courses\\ml1'

In [32]:
df_raw  = pd.read_csv(f'{PATH}\\AV_Stud\\train_HK6lq50_encoded_v3_250518.csv', low_memory= False)
df_test = pd.read_csv(f'{PATH}\\AV_Stud\\test_2nAIblo_encoded_v3_250518.csv',  low_memory=False)

init fe


In [5]:
df_raw.head(2)


Out[5]:
id program_id program_type program_duration test_id test_type difficulty_level trainee_id gender education city_tier age total_programs_enrolled is_handicapped trainee_engagement_rating is_pass
0 9389_150 Y_1 Y 136 150 offline intermediate 9389 M Matriculation 3 24.0 5 N 1.0 0
1 16523_44 T_1 T 131 44 offline easy 16523 F High School Diploma 4 26.0 2 N 3.0 1

In [6]:
#dropping id columns
df_raw.drop(['id','trainee_id'], inplace = True, axis =1)
df_test.drop(['id', 'trainee_id'], inplace = True, axis =1);

target = df_raw.is_pass;
df_raw.drop('is_pass', axis =1, inplace= True)

df_raw['age'].fillna(value = 45., inplace=True)
df_raw['trainee_engagement_rating'].fillna(value = 1., inplace=True)

In [34]:
df_raw.head(3)


Out[34]:
program_id program_type program_duration test_id test_type difficulty_level gender education city_tier age total_programs_enrolled is_handicapped trainee_engagement_rating
0 Y_1 Y 136 150 offline intermediate M Matriculation 3 24.0 5 N 1
1 T_1 T 131 44 offline easy F High School Diploma 4 26.0 2 N 3
2 Z_2 Z 120 178 online easy M Matriculation 1 40.0 1 N 2

In [38]:
#############################################################################################################
##########################################TRAIN SET FE'S######################################################
#############################################################################################################

df_raw['program_type__program_duration'] = df_raw.program_type.str.cat(df_raw.program_duration.astype(str),sep='_')
df_raw['program_type__city_tier'] = df_raw.program_type.str.cat(df_raw.city_tier.astype(str),sep='_')
df_raw['program_type__test_type'] = df_raw.program_type.str.cat(df_raw.test_type.astype(str),sep='_')
df_raw['program_type__difficulty_level'] = df_raw.program_type.str.cat(df_raw.difficulty_level.astype(str),sep='_')

df_raw['test_id__program_duration'] = df_raw.test_id.astype(str).str.cat(df_raw.program_duration.astype(str),sep='_')
df_raw['test_id__test_type'] = df_raw.test_id.astype(str).str.cat(df_raw.test_type.astype(str),sep='_')
df_raw['test_id_test_type__difficulty_level'] = df_raw.test_id__test_type.str.cat(df_raw.difficulty_level.astype(str),sep='_')
df_raw['test_type__difficulty_level'] = df_raw.test_type.str.cat(df_raw.difficulty_level.astype(str),sep='_')

df_raw['education__gender'] = df_raw.education.str.cat(df_raw.gender.astype(str),sep='_')
df_raw['education__total_programs_enrolled'] = df_raw.education.str.cat(df_raw.total_programs_enrolled.astype(str),sep='_')
df_raw['gender__city_tier'] = df_raw.gender.str.cat(df_raw.city_tier.astype(str),sep='_')
df_raw['gender__is_handicapped'] = df_raw.gender.str.cat(df_raw.is_handicapped.astype(str),sep='_')
df_raw['education__city_tier'] = df_raw.education.str.cat(df_raw.city_tier.astype(str),sep='_')

df_raw['program_duration_months'] = df_raw['program_duration'] / (7.)
df_raw['program_duration_years'] = df_raw['program_duration'] / (365.)
df_raw['program_duration_avg'] = df_raw['program_duration']/df_raw['total_programs_enrolled']

df_raw['is_age_39'] = np.zeros(df_raw.shape[0])
my_query = df_raw.query('age<=39.').index
df_raw.iloc[my_query, -1] = 1

df_raw['is_age_39_45'] = np.zeros(df_raw.shape[0])
my_query = df_raw.query('age>=39. & age<=45.').index
df_raw.iloc[my_query, -1] = 1

df_raw['is_age_45'] = np.zeros(df_raw.shape[0])
my_query = df_raw.query('age>=45.').index
df_raw.iloc[my_query, -1] = 1

###################young age (13–30), middle age (31–50) and senior age (51–70)########################

df_raw['age_group'] = np.zeros(df_raw.shape[0])

my_query = df_raw.query('age>=13. & age<=30.').index
df_raw.iloc[my_query, -1] = 'young'

my_query = df_raw.query('age>=31. & age<=50.').index
df_raw.iloc[my_query, -1] = 'middle_aged'

my_query = df_raw.query('age>=51. & age<=70.').index
df_raw.iloc[my_query, -1] = 'senior_aged'

df_raw['program_level'] = df_raw['program_id'].str.split(pat='_', expand=True).get(1).astype(object)

#df_raw['is_pass'] = target
#df_raw.drop('is_pass', axis = 1, inplace = True);

#############################################################################################################
##########################################TEST SET FE'S######################################################
#############################################################################################################

df_test['program_type__program_duration'] = df_test.program_type.str.cat(df_test.program_duration.astype(str),sep='_')
df_test['program_type__city_tier'] = df_test.program_type.str.cat(df_test.city_tier.astype(str),sep='_')
df_test['program_type__test_type'] = df_test.program_type.str.cat(df_test.test_type.astype(str),sep='_')
df_test['program_type__difficulty_level'] = df_test.program_type.str.cat(df_test.difficulty_level.astype(str),sep='_')

df_test['test_id__program_duration'] = df_test.test_id.astype(str).str.cat(df_test.program_duration.astype(str),sep='_')
df_test['test_id__test_type'] = df_test.test_id.astype(str).str.cat(df_test.test_type.astype(str),sep='_')
df_test['test_id_test_type__difficulty_level'] = df_test.test_id__test_type.str.cat(df_test.difficulty_level.astype(str),sep='_')
df_test['test_type__difficulty_level'] = df_test.test_type.str.cat(df_test.difficulty_level.astype(str),sep='_')

df_test['education__gender'] = df_test.education.str.cat(df_test.gender.astype(str),sep='_')
df_test['education__total_programs_enrolled'] = df_test.education.str.cat(df_test.total_programs_enrolled.astype(str),sep='_')
df_test['gender__city_tier'] = df_test.gender.str.cat(df_test.city_tier.astype(str),sep='_')
df_test['gender__is_handicapped'] = df_test.gender.str.cat(df_test.is_handicapped.astype(str),sep='_')
df_test['education__city_tier'] = df_test.education.str.cat(df_test.city_tier.astype(str),sep='_')

df_test['program_duration_months'] = df_test['program_duration'] / (7.)
df_test['program_duration_years'] = df_test['program_duration'] / (365.)
df_test['program_duration_avg'] = df_test['program_duration']/df_test['total_programs_enrolled']

df_test['is_age_39'] = np.zeros(df_test.shape[0])
my_query = df_test.query('age<=39.').index
df_test.iloc[my_query, -1] = 1

df_test['is_age_39_45'] = np.zeros(df_test.shape[0])
my_query = df_test.query('age>=39. & age<=45.').index
df_test.iloc[my_query, -1] = 1

df_test['is_age_45'] = np.zeros(df_test.shape[0])
my_query = df_test.query('age>=45.').index
df_test.iloc[my_query, -1] = 1

###################young age (13–30), middle age (31–50) and senior age (51–70)########################

df_test['age_group'] = np.zeros(df_test.shape[0])

my_query = df_test.query('age>=13. & age<=30.').index
df_test.iloc[my_query, -1] = 'young'

my_query = df_test.query('age>=31. & age<=50.').index
df_test.iloc[my_query, -1] = 'middle_aged'

my_query = df_test.query('age>=51. & age<=70.').index
df_test.iloc[my_query, -1] = 'senior_aged'

df_test['program_level'] = df_test['program_id'].str.split(pat='_', expand=True).get(1).astype(object)

########################################### Dropping few cols ##############################################3
df_raw.drop('program_id', inplace=True, axis =1)
df_test.drop('program_id', inplace=True, axis =1)

In [83]:
##################### sanity check  should be empty #####################
set(df_raw.columns) - set(df_test.columns)


Out[83]:
set()

In [84]:
# This way we have randomness and are able to reproduce the behaviour within this cell.
np.random.seed(13)
from sklearn.model_selection import KFold

def impact_coding(data, feature, target='y'):
    '''
    In this implementation we get the values and the dictionary as two different steps.
    This is just because initially we were ignoring the dictionary as a result variable.
    
    In this implementation the KFolds use shuffling. If you want reproducibility the cv 
    could be moved to a parameter.
    '''
    n_folds = 10
    n_inner_folds = 7
    impact_coded = pd.Series()
    
    oof_default_mean = data[target].mean() # Gobal mean to use by default (you could further tune this)
    kf = KFold(n_splits=n_folds, shuffle=True)
    oof_mean_cv = pd.DataFrame()
    split = 0
    for infold, oof in kf.split(data[feature]):
            impact_coded_cv = pd.Series()
            kf_inner = KFold(n_splits=n_inner_folds, shuffle=True)
            inner_split = 0
            inner_oof_mean_cv = pd.DataFrame()
            oof_default_inner_mean = data.iloc[infold][target].mean()
            for infold_inner, oof_inner in kf_inner.split(data.iloc[infold]):
                # The mean to apply to the inner oof split (a 1/n_folds % based on the rest)
                oof_mean = data.iloc[infold_inner].groupby(by=feature)[target].mean()
                impact_coded_cv = impact_coded_cv.append(data.iloc[infold].apply(
                            lambda x: oof_mean[x[feature]]
                                      if x[feature] in oof_mean.index
                                      else oof_default_inner_mean
                            , axis=1))

                # Also populate mapping (this has all group -> mean for all inner CV folds)
                inner_oof_mean_cv = inner_oof_mean_cv.join(pd.DataFrame(oof_mean), rsuffix=inner_split, how='outer')
                inner_oof_mean_cv.fillna(value=oof_default_inner_mean, inplace=True)
                inner_split += 1

            # Also populate mapping
            oof_mean_cv = oof_mean_cv.join(pd.DataFrame(inner_oof_mean_cv), rsuffix=split, how='outer')
            oof_mean_cv.fillna(value=oof_default_mean, inplace=True)
            split += 1
            
            impact_coded = impact_coded.append(data.iloc[oof].apply(
                            lambda x: inner_oof_mean_cv.loc[x[feature]].mean()
                                      if x[feature] in inner_oof_mean_cv.index
                                      else oof_default_mean
                            , axis=1))

    return impact_coded, oof_mean_cv.mean(axis=1), oof_default_mean

In [85]:
features = df_raw.columns
numeric_features = []
categorical_features = []

for dtype, feature in zip(df_raw.dtypes, df_raw.columns):
    if dtype == object:
        categorical_features.append(feature)
    else:
        numeric_features.append(feature)
categorical_features


Out[85]:
['program_type',
 'test_type',
 'difficulty_level',
 'gender',
 'education',
 'is_handicapped',
 'trainee_engagement_rating',
 'program_type__program_duration',
 'program_type__city_tier',
 'program_type__test_type',
 'program_type__difficulty_level',
 'test_id__program_duration',
 'test_id__test_type',
 'test_id_test_type__difficulty_level',
 'test_type__difficulty_level',
 'education__gender',
 'education__total_programs_enrolled',
 'gender__city_tier',
 'gender__is_handicapped',
 'education__city_tier',
 'age_group',
 'program_level']

In [86]:
%%time
# Apply the encoding to training and test data, and preserve the mapping
df_raw['is_pass'] = target
impact_coding_map = {}
for f in categorical_features:
    print("Impact coding for {}".format(f))
    df_raw["impact_encoded_{}".format(f)], impact_coding_mapping, default_coding = impact_coding(df_raw, f,'is_pass')
    impact_coding_map[f] = (impact_coding_mapping, default_coding)
    mapping, default_mean = impact_coding_map[f]
    df_test["impact_encoded_{}".format(f)] = df_test.apply(lambda x: mapping[x[f]]
                                                                         if x[f] in mapping
                                                                         else default_mean
                                                               , axis=1)
df_raw.drop('is_pass', inplace=True, axis=1)


Impact coding for program_type
Impact coding for test_type
Impact coding for difficulty_level
Impact coding for gender
Impact coding for education
Impact coding for is_handicapped
Impact coding for trainee_engagement_rating
Impact coding for program_type__program_duration
Impact coding for program_type__city_tier
Impact coding for program_type__test_type
Impact coding for program_type__difficulty_level
Impact coding for test_id__program_duration
Impact coding for test_id__test_type
Impact coding for test_id_test_type__difficulty_level
Impact coding for test_type__difficulty_level
Impact coding for education__gender
Impact coding for education__total_programs_enrolled
Impact coding for gender__city_tier
Impact coding for gender__is_handicapped
Impact coding for education__city_tier
Impact coding for age_group
Impact coding for program_level
Wall time: 54min 3s

In [89]:
df_raw['is_pass'] = target

In [90]:
df_raw.to_csv(f'{PATH}\\AV_Stud\\train_HK6lq50_encoded_v3_250518.csv',index=False)
df_test.to_csv(f'{PATH}\\AV_Stud\\test_2nAIblo_encoded_v3_250518.csv',index=False)

modelling part


In [92]:
categorical_features_indices = np.where(df_raw.dtypes == 'object')[0];
df_raw.drop('is_pass',axis=1,inplace=True);
categorical_features_indices


Out[92]:
array([ 0,  3,  4,  5,  6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 31, 32], dtype=int64)

In [94]:
X_train, X_validation, y_train, y_validation = train_test_split(df_raw, target, train_size=0.8, random_state=1234, shuffle=True)

model=CatBoostClassifier(iterations=1000, depth=12, learning_rate=0.01, loss_function='Logloss',use_best_model=True,\
                class_weights = [0.3045921227117995, 0.6954078772882005 ])

model.fit(X_train, y_train,cat_features=categorical_features_indices,eval_set=(X_validation, y_validation));


0:	learn: 0.6867808	test: 0.6867312	best: 0.6867312 (0)	total: 1.87s	remaining: 31m 7s
1:	learn: 0.6807377	test: 0.6808033	best: 0.6808033 (1)	total: 2.11s	remaining: 17m 32s
2:	learn: 0.6746046	test: 0.6746514	best: 0.6746514 (2)	total: 2.85s	remaining: 15m 45s
3:	learn: 0.6688808	test: 0.6689656	best: 0.6689656 (3)	total: 3.01s	remaining: 12m 30s
4:	learn: 0.6638230	test: 0.6639022	best: 0.6639022 (4)	total: 3.13s	remaining: 10m 22s
5:	learn: 0.6579859	test: 0.6579568	best: 0.6579568 (5)	total: 3.62s	remaining: 10m
6:	learn: 0.6523715	test: 0.6523962	best: 0.6523962 (6)	total: 4.06s	remaining: 9m 36s
7:	learn: 0.6467625	test: 0.6468480	best: 0.6468480 (7)	total: 4.73s	remaining: 9m 46s
8:	learn: 0.6413260	test: 0.6414122	best: 0.6414122 (8)	total: 5.24s	remaining: 9m 37s
9:	learn: 0.6365543	test: 0.6366293	best: 0.6366293 (9)	total: 5.4s	remaining: 8m 54s
10:	learn: 0.6317368	test: 0.6318091	best: 0.6318091 (10)	total: 5.64s	remaining: 8m 27s
11:	learn: 0.6271710	test: 0.6272396	best: 0.6272396 (11)	total: 9.19s	remaining: 12m 36s
12:	learn: 0.6228055	test: 0.6228884	best: 0.6228884 (12)	total: 9.29s	remaining: 11m 45s
13:	learn: 0.6182540	test: 0.6183236	best: 0.6183236 (13)	total: 9.62s	remaining: 11m 17s
14:	learn: 0.6136670	test: 0.6136431	best: 0.6136431 (14)	total: 13.2s	remaining: 14m 27s
15:	learn: 0.6092693	test: 0.6091489	best: 0.6091489 (15)	total: 17s	remaining: 17m 24s
16:	learn: 0.6044510	test: 0.6041909	best: 0.6041909 (16)	total: 20.1s	remaining: 19m 23s
17:	learn: 0.6002023	test: 0.5999313	best: 0.5999313 (17)	total: 20.3s	remaining: 18m 27s
18:	learn: 0.5965762	test: 0.5963032	best: 0.5963032 (18)	total: 20.4s	remaining: 17m 30s
19:	learn: 0.5924522	test: 0.5921870	best: 0.5921870 (19)	total: 24s	remaining: 19m 38s
20:	learn: 0.5889749	test: 0.5886969	best: 0.5886969 (20)	total: 24.4s	remaining: 18m 57s
21:	learn: 0.5855916	test: 0.5853117	best: 0.5853117 (21)	total: 24.5s	remaining: 18m 7s
22:	learn: 0.5822471	test: 0.5819611	best: 0.5819611 (22)	total: 24.6s	remaining: 17m 26s
23:	learn: 0.5785293	test: 0.5782030	best: 0.5782030 (23)	total: 24.8s	remaining: 16m 49s
24:	learn: 0.5753467	test: 0.5750209	best: 0.5750209 (24)	total: 24.9s	remaining: 16m 12s
25:	learn: 0.5718261	test: 0.5714764	best: 0.5714764 (25)	total: 25.5s	remaining: 15m 54s
26:	learn: 0.5681958	test: 0.5678676	best: 0.5678676 (26)	total: 26.2s	remaining: 15m 44s
27:	learn: 0.5652552	test: 0.5649254	best: 0.5649254 (27)	total: 26.3s	remaining: 15m 13s
28:	learn: 0.5623807	test: 0.5620493	best: 0.5620493 (28)	total: 26.4s	remaining: 14m 43s
29:	learn: 0.5595618	test: 0.5592251	best: 0.5592251 (29)	total: 26.5s	remaining: 14m 16s
30:	learn: 0.5566964	test: 0.5563284	best: 0.5563284 (30)	total: 26.6s	remaining: 13m 52s
31:	learn: 0.5535383	test: 0.5530372	best: 0.5530372 (31)	total: 27.1s	remaining: 13m 39s
32:	learn: 0.5505994	test: 0.5501016	best: 0.5501016 (32)	total: 27.3s	remaining: 13m 20s
33:	learn: 0.5472088	test: 0.5467029	best: 0.5467029 (33)	total: 29.4s	remaining: 13m 55s
34:	learn: 0.5444385	test: 0.5439059	best: 0.5439059 (34)	total: 30s	remaining: 13m 46s
35:	learn: 0.5414712	test: 0.5408160	best: 0.5408160 (35)	total: 32.2s	remaining: 14m 23s
36:	learn: 0.5390035	test: 0.5383845	best: 0.5383845 (36)	total: 33.4s	remaining: 14m 30s
37:	learn: 0.5366776	test: 0.5360603	best: 0.5360603 (37)	total: 33.5s	remaining: 14m 7s
38:	learn: 0.5339829	test: 0.5333504	best: 0.5333504 (38)	total: 34.7s	remaining: 14m 16s
39:	learn: 0.5317633	test: 0.5311326	best: 0.5311326 (39)	total: 34.8s	remaining: 13m 55s
40:	learn: 0.5289697	test: 0.5282332	best: 0.5282332 (40)	total: 35.2s	remaining: 13m 44s
41:	learn: 0.5263870	test: 0.5256845	best: 0.5256845 (41)	total: 35.9s	remaining: 13m 38s
42:	learn: 0.5238148	test: 0.5232145	best: 0.5232145 (42)	total: 36.4s	remaining: 13m 30s
43:	learn: 0.5215241	test: 0.5209263	best: 0.5209263 (43)	total: 39.1s	remaining: 14m 8s
44:	learn: 0.5191903	test: 0.5187052	best: 0.5187052 (44)	total: 39.2s	remaining: 13m 51s
45:	learn: 0.5172688	test: 0.5167835	best: 0.5167835 (45)	total: 39.2s	remaining: 13m 33s
46:	learn: 0.5149718	test: 0.5143778	best: 0.5143778 (46)	total: 39.6s	remaining: 13m 23s
47:	learn: 0.5129069	test: 0.5122485	best: 0.5122485 (47)	total: 40s	remaining: 13m 12s
48:	learn: 0.5109348	test: 0.5102457	best: 0.5102457 (48)	total: 40.2s	remaining: 13m
49:	learn: 0.5085494	test: 0.5078272	best: 0.5078272 (49)	total: 40.9s	remaining: 12m 57s
50:	learn: 0.5068424	test: 0.5061225	best: 0.5061225 (50)	total: 41s	remaining: 12m 42s
51:	learn: 0.5050366	test: 0.5042269	best: 0.5042269 (51)	total: 43s	remaining: 13m 4s
52:	learn: 0.5031770	test: 0.5023890	best: 0.5023890 (52)	total: 43.5s	remaining: 12m 56s
53:	learn: 0.5015815	test: 0.5007959	best: 0.5007959 (53)	total: 43.6s	remaining: 12m 43s
54:	learn: 0.5000232	test: 0.4992409	best: 0.4992409 (54)	total: 43.6s	remaining: 12m 29s
55:	learn: 0.4980238	test: 0.4971694	best: 0.4971694 (55)	total: 44.2s	remaining: 12m 24s
56:	learn: 0.4965368	test: 0.4956860	best: 0.4956860 (56)	total: 44.2s	remaining: 12m 11s
57:	learn: 0.4950828	test: 0.4942354	best: 0.4942354 (57)	total: 44.3s	remaining: 11m 59s
58:	learn: 0.4936610	test: 0.4928170	best: 0.4928170 (58)	total: 44.4s	remaining: 11m 47s
59:	learn: 0.4919753	test: 0.4911113	best: 0.4911113 (59)	total: 45.1s	remaining: 11m 47s
60:	learn: 0.4906040	test: 0.4897410	best: 0.4897410 (60)	total: 45.5s	remaining: 11m 39s
61:	learn: 0.4892708	test: 0.4884088	best: 0.4884088 (61)	total: 45.8s	remaining: 11m 32s
62:	learn: 0.4879711	test: 0.4871137	best: 0.4871137 (62)	total: 45.9s	remaining: 11m 22s
63:	learn: 0.4866928	test: 0.4858309	best: 0.4858309 (63)	total: 46.1s	remaining: 11m 14s
64:	learn: 0.4854499	test: 0.4845917	best: 0.4845917 (64)	total: 46.2s	remaining: 11m 4s
65:	learn: 0.4842313	test: 0.4833762	best: 0.4833762 (65)	total: 46.3s	remaining: 10m 55s
66:	learn: 0.4826916	test: 0.4818342	best: 0.4818342 (66)	total: 46.9s	remaining: 10m 53s
67:	learn: 0.4815284	test: 0.4806732	best: 0.4806732 (67)	total: 47.1s	remaining: 10m 46s
68:	learn: 0.4803945	test: 0.4795429	best: 0.4795429 (68)	total: 47.2s	remaining: 10m 36s
69:	learn: 0.4792845	test: 0.4784368	best: 0.4784368 (69)	total: 47.5s	remaining: 10m 31s
70:	learn: 0.4781999	test: 0.4773557	best: 0.4773557 (70)	total: 47.6s	remaining: 10m 22s
71:	learn: 0.4770281	test: 0.4761906	best: 0.4761906 (71)	total: 47.9s	remaining: 10m 17s
72:	learn: 0.4759895	test: 0.4751556	best: 0.4751556 (72)	total: 48.2s	remaining: 10m 11s
73:	learn: 0.4749752	test: 0.4741447	best: 0.4741447 (73)	total: 48.3s	remaining: 10m 4s
74:	learn: 0.4736873	test: 0.4727794	best: 0.4727794 (74)	total: 52.8s	remaining: 10m 51s
75:	learn: 0.4726047	test: 0.4717104	best: 0.4717104 (75)	total: 53.5s	remaining: 10m 49s
76:	learn: 0.4716580	test: 0.4707682	best: 0.4707682 (76)	total: 53.5s	remaining: 10m 41s
77:	learn: 0.4706688	test: 0.4697945	best: 0.4697945 (77)	total: 57.9s	remaining: 11m 24s
78:	learn: 0.4696689	test: 0.4688084	best: 0.4688084 (78)	total: 58.5s	remaining: 11m 21s
79:	learn: 0.4686828	test: 0.4678193	best: 0.4678193 (79)	total: 59.4s	remaining: 11m 22s
80:	learn: 0.4676845	test: 0.4668078	best: 0.4668078 (80)	total: 59.6s	remaining: 11m 16s
81:	learn: 0.4665752	test: 0.4656615	best: 0.4656615 (81)	total: 1m 3s	remaining: 11m 56s
82:	learn: 0.4657491	test: 0.4648406	best: 0.4648406 (82)	total: 1m 4s	remaining: 11m 48s
83:	learn: 0.4649330	test: 0.4640278	best: 0.4640278 (83)	total: 1m 4s	remaining: 11m 42s
84:	learn: 0.4640029	test: 0.4630766	best: 0.4630766 (84)	total: 1m 4s	remaining: 11m 37s
85:	learn: 0.4629629	test: 0.4621805	best: 0.4621805 (85)	total: 1m 8s	remaining: 12m 11s
86:	learn: 0.4622084	test: 0.4614303	best: 0.4614303 (86)	total: 1m 8s	remaining: 12m 3s
87:	learn: 0.4614620	test: 0.4606878	best: 0.4606878 (87)	total: 1m 9s	remaining: 11m 59s
88:	learn: 0.4607401	test: 0.4599700	best: 0.4599700 (88)	total: 1m 9s	remaining: 11m 51s
89:	learn: 0.4600172	test: 0.4592477	best: 0.4592477 (89)	total: 1m 9s	remaining: 11m 45s
90:	learn: 0.4592956	test: 0.4585330	best: 0.4585330 (90)	total: 1m 9s	remaining: 11m 39s
91:	learn: 0.4586173	test: 0.4578586	best: 0.4578586 (91)	total: 1m 10s	remaining: 11m 32s
92:	learn: 0.4579479	test: 0.4571913	best: 0.4571913 (92)	total: 1m 10s	remaining: 11m 26s
93:	learn: 0.4572930	test: 0.4565368	best: 0.4565368 (93)	total: 1m 10s	remaining: 11m 23s
94:	learn: 0.4566578	test: 0.4559054	best: 0.4559054 (94)	total: 1m 11s	remaining: 11m 16s
95:	learn: 0.4560140	test: 0.4552682	best: 0.4552682 (95)	total: 1m 11s	remaining: 11m 11s
96:	learn: 0.4554011	test: 0.4546595	best: 0.4546595 (96)	total: 1m 11s	remaining: 11m 4s
97:	learn: 0.4547904	test: 0.4540550	best: 0.4540550 (97)	total: 1m 11s	remaining: 10m 59s
98:	learn: 0.4542052	test: 0.4534753	best: 0.4534753 (98)	total: 1m 11s	remaining: 10m 53s
99:	learn: 0.4536269	test: 0.4529036	best: 0.4529036 (99)	total: 1m 11s	remaining: 10m 47s
100:	learn: 0.4530708	test: 0.4523511	best: 0.4523511 (100)	total: 1m 12s	remaining: 10m 41s
101:	learn: 0.4525133	test: 0.4517994	best: 0.4517994 (101)	total: 1m 12s	remaining: 10m 36s
102:	learn: 0.4519800	test: 0.4512694	best: 0.4512694 (102)	total: 1m 12s	remaining: 10m 33s
103:	learn: 0.4514534	test: 0.4507438	best: 0.4507438 (103)	total: 1m 12s	remaining: 10m 27s
104:	learn: 0.4509089	test: 0.4502000	best: 0.4502000 (104)	total: 1m 13s	remaining: 10m 23s
105:	learn: 0.4504103	test: 0.4497035	best: 0.4497035 (105)	total: 1m 13s	remaining: 10m 17s
106:	learn: 0.4499236	test: 0.4492202	best: 0.4492202 (106)	total: 1m 13s	remaining: 10m 11s
107:	learn: 0.4494407	test: 0.4487380	best: 0.4487380 (107)	total: 1m 13s	remaining: 10m 5s
108:	learn: 0.4489734	test: 0.4482732	best: 0.4482732 (108)	total: 1m 13s	remaining: 10m
109:	learn: 0.4485163	test: 0.4478185	best: 0.4478185 (109)	total: 1m 13s	remaining: 9m 55s
110:	learn: 0.4480696	test: 0.4473756	best: 0.4473756 (110)	total: 1m 13s	remaining: 9m 50s
111:	learn: 0.4475606	test: 0.4468461	best: 0.4468461 (111)	total: 1m 13s	remaining: 9m 46s
112:	learn: 0.4471328	test: 0.4464219	best: 0.4464219 (112)	total: 1m 14s	remaining: 9m 41s
113:	learn: 0.4467150	test: 0.4460074	best: 0.4460074 (113)	total: 1m 14s	remaining: 9m 36s
114:	learn: 0.4463060	test: 0.4456017	best: 0.4456017 (114)	total: 1m 14s	remaining: 9m 31s
115:	learn: 0.4459038	test: 0.4452028	best: 0.4452028 (115)	total: 1m 14s	remaining: 9m 28s
116:	learn: 0.4453540	test: 0.4445888	best: 0.4445888 (116)	total: 1m 15s	remaining: 9m 29s
117:	learn: 0.4449712	test: 0.4442099	best: 0.4442099 (117)	total: 1m 15s	remaining: 9m 24s
118:	learn: 0.4445825	test: 0.4438219	best: 0.4438219 (118)	total: 1m 16s	remaining: 9m 25s
119:	learn: 0.4442159	test: 0.4434589	best: 0.4434589 (119)	total: 1m 16s	remaining: 9m 20s
120:	learn: 0.4438572	test: 0.4431038	best: 0.4431038 (120)	total: 1m 16s	remaining: 9m 16s
121:	learn: 0.4435001	test: 0.4427517	best: 0.4427517 (121)	total: 1m 16s	remaining: 9m 12s
122:	learn: 0.4431565	test: 0.4424116	best: 0.4424116 (122)	total: 1m 16s	remaining: 9m 8s
123:	learn: 0.4428202	test: 0.4420787	best: 0.4420787 (123)	total: 1m 16s	remaining: 9m 3s
124:	learn: 0.4424475	test: 0.4416968	best: 0.4416968 (124)	total: 1m 17s	remaining: 9m 3s
125:	learn: 0.4421246	test: 0.4413768	best: 0.4413768 (125)	total: 1m 17s	remaining: 8m 59s
126:	learn: 0.4418095	test: 0.4410651	best: 0.4410651 (126)	total: 1m 17s	remaining: 8m 55s
127:	learn: 0.4414727	test: 0.4407351	best: 0.4407351 (127)	total: 1m 17s	remaining: 8m 51s
128:	learn: 0.4411653	test: 0.4404323	best: 0.4404323 (128)	total: 1m 18s	remaining: 8m 47s
129:	learn: 0.4408699	test: 0.4401402	best: 0.4401402 (129)	total: 1m 18s	remaining: 8m 43s
130:	learn: 0.4405796	test: 0.4398535	best: 0.4398535 (130)	total: 1m 18s	remaining: 8m 39s
131:	learn: 0.4402965	test: 0.4395738	best: 0.4395738 (131)	total: 1m 18s	remaining: 8m 35s
132:	learn: 0.4400127	test: 0.4392930	best: 0.4392930 (132)	total: 1m 19s	remaining: 8m 37s
133:	learn: 0.4397415	test: 0.4390250	best: 0.4390250 (133)	total: 1m 19s	remaining: 8m 33s
134:	learn: 0.4394729	test: 0.4387581	best: 0.4387581 (134)	total: 1m 19s	remaining: 8m 30s
135:	learn: 0.4392131	test: 0.4385015	best: 0.4385015 (135)	total: 1m 19s	remaining: 8m 26s
136:	learn: 0.4389577	test: 0.4382502	best: 0.4382502 (136)	total: 1m 19s	remaining: 8m 23s
137:	learn: 0.4387087	test: 0.4380042	best: 0.4380042 (137)	total: 1m 20s	remaining: 8m 19s
138:	learn: 0.4384645	test: 0.4377631	best: 0.4377631 (138)	total: 1m 20s	remaining: 8m 16s
139:	learn: 0.4382191	test: 0.4375230	best: 0.4375230 (139)	total: 1m 20s	remaining: 8m 14s
140:	learn: 0.4379744	test: 0.4372833	best: 0.4372833 (140)	total: 1m 20s	remaining: 8m 12s
141:	learn: 0.4377459	test: 0.4370577	best: 0.4370577 (141)	total: 1m 20s	remaining: 8m 8s
142:	learn: 0.4375213	test: 0.4368369	best: 0.4368369 (142)	total: 1m 21s	remaining: 8m 5s
143:	learn: 0.4373022	test: 0.4366207	best: 0.4366207 (143)	total: 1m 21s	remaining: 8m 2s
144:	learn: 0.4370770	test: 0.4363999	best: 0.4363999 (144)	total: 1m 21s	remaining: 7m 59s
145:	learn: 0.4368671	test: 0.4361928	best: 0.4361928 (145)	total: 1m 21s	remaining: 7m 55s
146:	learn: 0.4366439	test: 0.4359774	best: 0.4359774 (146)	total: 1m 21s	remaining: 7m 53s
147:	learn: 0.4364428	test: 0.4357790	best: 0.4357790 (147)	total: 1m 21s	remaining: 7m 50s
148:	learn: 0.4362415	test: 0.4355804	best: 0.4355804 (148)	total: 1m 21s	remaining: 7m 48s
149:	learn: 0.4360458	test: 0.4353880	best: 0.4353880 (149)	total: 1m 22s	remaining: 7m 46s
150:	learn: 0.4358526	test: 0.4352018	best: 0.4352018 (150)	total: 1m 22s	remaining: 7m 46s
151:	learn: 0.4356679	test: 0.4350197	best: 0.4350197 (151)	total: 1m 23s	remaining: 7m 43s
152:	learn: 0.4354213	test: 0.4347799	best: 0.4347799 (152)	total: 1m 26s	remaining: 8m 1s
153:	learn: 0.4352444	test: 0.4346057	best: 0.4346057 (153)	total: 1m 27s	remaining: 7m 58s
154:	learn: 0.4350709	test: 0.4344352	best: 0.4344352 (154)	total: 1m 27s	remaining: 7m 55s
155:	learn: 0.4349013	test: 0.4342681	best: 0.4342681 (155)	total: 1m 27s	remaining: 7m 52s
156:	learn: 0.4347230	test: 0.4340947	best: 0.4340947 (156)	total: 1m 27s	remaining: 7m 49s
157:	learn: 0.4345370	test: 0.4339071	best: 0.4339071 (157)	total: 1m 27s	remaining: 7m 47s
158:	learn: 0.4343779	test: 0.4337507	best: 0.4337507 (158)	total: 1m 27s	remaining: 7m 44s
159:	learn: 0.4342217	test: 0.4335976	best: 0.4335976 (159)	total: 1m 28s	remaining: 7m 43s
160:	learn: 0.4340552	test: 0.4334366	best: 0.4334366 (160)	total: 1m 28s	remaining: 7m 41s
161:	learn: 0.4339022	test: 0.4332874	best: 0.4332874 (161)	total: 1m 28s	remaining: 7m 40s
162:	learn: 0.4337560	test: 0.4331438	best: 0.4331438 (162)	total: 1m 29s	remaining: 7m 37s
163:	learn: 0.4336129	test: 0.4330032	best: 0.4330032 (163)	total: 1m 29s	remaining: 7m 34s
164:	learn: 0.4334727	test: 0.4328656	best: 0.4328656 (164)	total: 1m 29s	remaining: 7m 31s
165:	learn: 0.4333343	test: 0.4327285	best: 0.4327285 (165)	total: 1m 29s	remaining: 7m 29s
166:	learn: 0.4331997	test: 0.4325965	best: 0.4325965 (166)	total: 1m 29s	remaining: 7m 27s
167:	learn: 0.4330680	test: 0.4324674	best: 0.4324674 (167)	total: 1m 29s	remaining: 7m 24s
168:	learn: 0.4329392	test: 0.4323410	best: 0.4323410 (168)	total: 1m 29s	remaining: 7m 21s
169:	learn: 0.4328130	test: 0.4322172	best: 0.4322172 (169)	total: 1m 29s	remaining: 7m 19s
170:	learn: 0.4326895	test: 0.4320961	best: 0.4320961 (170)	total: 1m 29s	remaining: 7m 16s
171:	learn: 0.4325686	test: 0.4319774	best: 0.4319774 (171)	total: 1m 30s	remaining: 7m 13s
172:	learn: 0.4324501	test: 0.4318613	best: 0.4318613 (172)	total: 1m 30s	remaining: 7m 11s
173:	learn: 0.4323317	test: 0.4317452	best: 0.4317452 (173)	total: 1m 30s	remaining: 7m 9s
174:	learn: 0.4322181	test: 0.4316339	best: 0.4316339 (174)	total: 1m 30s	remaining: 7m 6s
175:	learn: 0.4321069	test: 0.4315249	best: 0.4315249 (175)	total: 1m 30s	remaining: 7m 3s
176:	learn: 0.4319979	test: 0.4314178	best: 0.4314178 (176)	total: 1m 30s	remaining: 7m 1s
177:	learn: 0.4318913	test: 0.4313133	best: 0.4313133 (177)	total: 1m 30s	remaining: 6m 58s
178:	learn: 0.4317869	test: 0.4312110	best: 0.4312110 (178)	total: 1m 30s	remaining: 6m 56s
179:	learn: 0.4316845	test: 0.4311109	best: 0.4311109 (179)	total: 1m 31s	remaining: 6m 54s
180:	learn: 0.4315831	test: 0.4310120	best: 0.4310120 (180)	total: 1m 31s	remaining: 6m 52s
181:	learn: 0.4314851	test: 0.4309160	best: 0.4309160 (181)	total: 1m 31s	remaining: 6m 50s
182:	learn: 0.4313868	test: 0.4308210	best: 0.4308210 (182)	total: 1m 31s	remaining: 6m 49s
183:	learn: 0.4312910	test: 0.4307265	best: 0.4307265 (183)	total: 1m 31s	remaining: 6m 46s
184:	learn: 0.4311989	test: 0.4306364	best: 0.4306364 (184)	total: 1m 31s	remaining: 6m 44s
185:	learn: 0.4311084	test: 0.4305479	best: 0.4305479 (185)	total: 1m 32s	remaining: 6m 42s
186:	learn: 0.4310182	test: 0.4304588	best: 0.4304588 (186)	total: 1m 32s	remaining: 6m 40s
187:	learn: 0.4309306	test: 0.4303733	best: 0.4303733 (187)	total: 1m 32s	remaining: 6m 39s
188:	learn: 0.4308455	test: 0.4302903	best: 0.4302903 (188)	total: 1m 32s	remaining: 6m 36s
189:	learn: 0.4307593	test: 0.4302082	best: 0.4302082 (189)	total: 1m 32s	remaining: 6m 36s
190:	learn: 0.4306771	test: 0.4301294	best: 0.4301294 (190)	total: 1m 33s	remaining: 6m 34s
191:	learn: 0.4305951	test: 0.4300498	best: 0.4300498 (191)	total: 1m 33s	remaining: 6m 33s
192:	learn: 0.4305164	test: 0.4299737	best: 0.4299737 (192)	total: 1m 33s	remaining: 6m 31s
193:	learn: 0.4304173	test: 0.4298846	best: 0.4298846 (193)	total: 1m 33s	remaining: 6m 30s
194:	learn: 0.4303425	test: 0.4298115	best: 0.4298115 (194)	total: 1m 34s	remaining: 6m 28s
195:	learn: 0.4302693	test: 0.4297401	best: 0.4297401 (195)	total: 1m 34s	remaining: 6m 26s
196:	learn: 0.4301977	test: 0.4296702	best: 0.4296702 (196)	total: 1m 34s	remaining: 6m 24s
197:	learn: 0.4301263	test: 0.4296011	best: 0.4296011 (197)	total: 1m 34s	remaining: 6m 23s
198:	learn: 0.4300576	test: 0.4295340	best: 0.4295340 (198)	total: 1m 34s	remaining: 6m 21s
199:	learn: 0.4299903	test: 0.4294684	best: 0.4294684 (199)	total: 1m 34s	remaining: 6m 19s
200:	learn: 0.4299244	test: 0.4294041	best: 0.4294041 (200)	total: 1m 34s	remaining: 6m 17s
201:	learn: 0.4298595	test: 0.4293413	best: 0.4293413 (201)	total: 1m 35s	remaining: 6m 16s
202:	learn: 0.4297962	test: 0.4292797	best: 0.4292797 (202)	total: 1m 35s	remaining: 6m 14s
203:	learn: 0.4297343	test: 0.4292193	best: 0.4292193 (203)	total: 1m 35s	remaining: 6m 12s
204:	learn: 0.4296736	test: 0.4291602	best: 0.4291602 (204)	total: 1m 35s	remaining: 6m 10s
205:	learn: 0.4296129	test: 0.4291019	best: 0.4291019 (205)	total: 1m 35s	remaining: 6m 8s
206:	learn: 0.4295547	test: 0.4290453	best: 0.4290453 (206)	total: 1m 35s	remaining: 6m 6s
207:	learn: 0.4294977	test: 0.4289898	best: 0.4289898 (207)	total: 1m 35s	remaining: 6m 4s
208:	learn: 0.4294419	test: 0.4289355	best: 0.4289355 (208)	total: 1m 35s	remaining: 6m 2s
209:	learn: 0.4293858	test: 0.4288819	best: 0.4288819 (209)	total: 1m 35s	remaining: 6m
210:	learn: 0.4293322	test: 0.4288298	best: 0.4288298 (210)	total: 1m 36s	remaining: 5m 59s
211:	learn: 0.4292687	test: 0.4287700	best: 0.4287700 (211)	total: 1m 36s	remaining: 5m 58s
212:	learn: 0.4292172	test: 0.4287200	best: 0.4287200 (212)	total: 1m 36s	remaining: 5m 56s
213:	learn: 0.4291665	test: 0.4286709	best: 0.4286709 (213)	total: 1m 36s	remaining: 5m 55s
214:	learn: 0.4291172	test: 0.4286230	best: 0.4286230 (214)	total: 1m 36s	remaining: 5m 53s
215:	learn: 0.4290688	test: 0.4285761	best: 0.4285761 (215)	total: 1m 37s	remaining: 5m 52s
216:	learn: 0.4290215	test: 0.4285302	best: 0.4285302 (216)	total: 1m 37s	remaining: 5m 51s
217:	learn: 0.4289751	test: 0.4284850	best: 0.4284850 (217)	total: 1m 37s	remaining: 5m 49s
218:	learn: 0.4289294	test: 0.4284410	best: 0.4284410 (218)	total: 1m 37s	remaining: 5m 47s
219:	learn: 0.4288850	test: 0.4283979	best: 0.4283979 (219)	total: 1m 37s	remaining: 5m 46s
220:	learn: 0.4288414	test: 0.4283557	best: 0.4283557 (220)	total: 1m 37s	remaining: 5m 44s
221:	learn: 0.4287988	test: 0.4283144	best: 0.4283144 (221)	total: 1m 37s	remaining: 5m 42s
222:	learn: 0.4287555	test: 0.4282733	best: 0.4282733 (222)	total: 1m 37s	remaining: 5m 41s
223:	learn: 0.4287145	test: 0.4282337	best: 0.4282337 (223)	total: 1m 38s	remaining: 5m 39s
224:	learn: 0.4286742	test: 0.4281948	best: 0.4281948 (224)	total: 1m 38s	remaining: 5m 38s
225:	learn: 0.4286349	test: 0.4281568	best: 0.4281568 (225)	total: 1m 38s	remaining: 5m 36s
226:	learn: 0.4285964	test: 0.4281195	best: 0.4281195 (226)	total: 1m 38s	remaining: 5m 35s
227:	learn: 0.4285588	test: 0.4280831	best: 0.4280831 (227)	total: 1m 38s	remaining: 5m 33s
228:	learn: 0.4285218	test: 0.4280474	best: 0.4280474 (228)	total: 1m 38s	remaining: 5m 31s
229:	learn: 0.4284842	test: 0.4280128	best: 0.4280128 (229)	total: 1m 38s	remaining: 5m 30s
230:	learn: 0.4284487	test: 0.4279785	best: 0.4279785 (230)	total: 1m 38s	remaining: 5m 29s
231:	learn: 0.4284141	test: 0.4279450	best: 0.4279450 (231)	total: 1m 38s	remaining: 5m 27s
232:	learn: 0.4283788	test: 0.4279114	best: 0.4279114 (232)	total: 1m 39s	remaining: 5m 26s
233:	learn: 0.4283453	test: 0.4278792	best: 0.4278792 (233)	total: 1m 39s	remaining: 5m 24s
234:	learn: 0.4283127	test: 0.4278477	best: 0.4278477 (234)	total: 1m 39s	remaining: 5m 23s
235:	learn: 0.4282807	test: 0.4278169	best: 0.4278169 (235)	total: 1m 39s	remaining: 5m 21s
236:	learn: 0.4282494	test: 0.4277867	best: 0.4277867 (236)	total: 1m 39s	remaining: 5m 20s
237:	learn: 0.4282179	test: 0.4277570	best: 0.4277570 (237)	total: 1m 39s	remaining: 5m 19s
238:	learn: 0.4281878	test: 0.4277280	best: 0.4277280 (238)	total: 1m 39s	remaining: 5m 17s
239:	learn: 0.4281584	test: 0.4276997	best: 0.4276997 (239)	total: 1m 39s	remaining: 5m 15s
240:	learn: 0.4281296	test: 0.4276719	best: 0.4276719 (240)	total: 1m 39s	remaining: 5m 14s
241:	learn: 0.4281012	test: 0.4276447	best: 0.4276447 (241)	total: 1m 40s	remaining: 5m 13s
242:	learn: 0.4280736	test: 0.4276181	best: 0.4276181 (242)	total: 1m 40s	remaining: 5m 12s
243:	learn: 0.4280465	test: 0.4275920	best: 0.4275920 (243)	total: 1m 40s	remaining: 5m 10s
244:	learn: 0.4280199	test: 0.4275665	best: 0.4275665 (244)	total: 1m 40s	remaining: 5m 9s
245:	learn: 0.4279938	test: 0.4275414	best: 0.4275414 (245)	total: 1m 40s	remaining: 5m 7s
246:	learn: 0.4279683	test: 0.4275169	best: 0.4275169 (246)	total: 1m 40s	remaining: 5m 6s
247:	learn: 0.4279433	test: 0.4274929	best: 0.4274929 (247)	total: 1m 40s	remaining: 5m 4s
248:	learn: 0.4279189	test: 0.4274695	best: 0.4274695 (248)	total: 1m 40s	remaining: 5m 3s
249:	learn: 0.4278939	test: 0.4274441	best: 0.4274441 (249)	total: 1m 41s	remaining: 5m 3s
250:	learn: 0.4278695	test: 0.4274215	best: 0.4274215 (250)	total: 1m 41s	remaining: 5m 2s
251:	learn: 0.4278465	test: 0.4273994	best: 0.4273994 (251)	total: 1m 41s	remaining: 5m
252:	learn: 0.4278240	test: 0.4273778	best: 0.4273778 (252)	total: 1m 41s	remaining: 4m 59s
253:	learn: 0.4278019	test: 0.4273566	best: 0.4273566 (253)	total: 1m 41s	remaining: 4m 58s
254:	learn: 0.4277803	test: 0.4273359	best: 0.4273359 (254)	total: 1m 41s	remaining: 4m 56s
255:	learn: 0.4277591	test: 0.4273156	best: 0.4273156 (255)	total: 1m 41s	remaining: 4m 55s
256:	learn: 0.4277383	test: 0.4272958	best: 0.4272958 (256)	total: 1m 41s	remaining: 4m 54s
257:	learn: 0.4277180	test: 0.4272763	best: 0.4272763 (257)	total: 1m 41s	remaining: 4m 53s
258:	learn: 0.4276981	test: 0.4272573	best: 0.4272573 (258)	total: 1m 41s	remaining: 4m 51s
259:	learn: 0.4276786	test: 0.4272386	best: 0.4272386 (259)	total: 1m 42s	remaining: 4m 50s
260:	learn: 0.4276594	test: 0.4272203	best: 0.4272203 (260)	total: 1m 42s	remaining: 4m 49s
261:	learn: 0.4276407	test: 0.4272024	best: 0.4272024 (261)	total: 1m 42s	remaining: 4m 48s
262:	learn: 0.4276223	test: 0.4271849	best: 0.4271849 (262)	total: 1m 42s	remaining: 4m 47s
263:	learn: 0.4276043	test: 0.4271677	best: 0.4271677 (263)	total: 1m 42s	remaining: 4m 45s
264:	learn: 0.4275867	test: 0.4271509	best: 0.4271509 (264)	total: 1m 42s	remaining: 4m 44s
265:	learn: 0.4275693	test: 0.4271344	best: 0.4271344 (265)	total: 1m 42s	remaining: 4m 43s
266:	learn: 0.4275524	test: 0.4271183	best: 0.4271183 (266)	total: 1m 42s	remaining: 4m 42s
267:	learn: 0.4275358	test: 0.4271025	best: 0.4271025 (267)	total: 1m 42s	remaining: 4m 41s
268:	learn: 0.4275196	test: 0.4270870	best: 0.4270870 (268)	total: 1m 43s	remaining: 4m 40s
269:	learn: 0.4275037	test: 0.4270719	best: 0.4270719 (269)	total: 1m 43s	remaining: 4m 38s
270:	learn: 0.4274881	test: 0.4270571	best: 0.4270571 (270)	total: 1m 43s	remaining: 4m 37s
271:	learn: 0.4274729	test: 0.4270425	best: 0.4270425 (271)	total: 1m 43s	remaining: 4m 36s
272:	learn: 0.4274579	test: 0.4270283	best: 0.4270283 (272)	total: 1m 43s	remaining: 4m 35s
273:	learn: 0.4273999	test: 0.4269743	best: 0.4269743 (273)	total: 1m 43s	remaining: 4m 34s
274:	learn: 0.4273853	test: 0.4269607	best: 0.4269607 (274)	total: 1m 44s	remaining: 4m 34s
275:	learn: 0.4273711	test: 0.4269473	best: 0.4269473 (275)	total: 1m 44s	remaining: 4m 33s
276:	learn: 0.4273574	test: 0.4269343	best: 0.4269343 (276)	total: 1m 44s	remaining: 4m 32s
277:	learn: 0.4273439	test: 0.4269215	best: 0.4269215 (277)	total: 1m 44s	remaining: 4m 31s
278:	learn: 0.4273306	test: 0.4269090	best: 0.4269090 (278)	total: 1m 44s	remaining: 4m 30s
279:	learn: 0.4273176	test: 0.4268967	best: 0.4268967 (279)	total: 1m 44s	remaining: 4m 29s
280:	learn: 0.4273050	test: 0.4268848	best: 0.4268848 (280)	total: 1m 44s	remaining: 4m 27s
281:	learn: 0.4272925	test: 0.4268730	best: 0.4268730 (281)	total: 1m 44s	remaining: 4m 26s
282:	learn: 0.4272804	test: 0.4268615	best: 0.4268615 (282)	total: 1m 44s	remaining: 4m 25s
283:	learn: 0.4272685	test: 0.4268502	best: 0.4268502 (283)	total: 1m 44s	remaining: 4m 24s
284:	learn: 0.4272568	test: 0.4268392	best: 0.4268392 (284)	total: 1m 44s	remaining: 4m 23s
285:	learn: 0.4272390	test: 0.4268238	best: 0.4268238 (285)	total: 1m 45s	remaining: 4m 22s
286:	learn: 0.4272278	test: 0.4268133	best: 0.4268133 (286)	total: 1m 45s	remaining: 4m 21s
287:	learn: 0.4272168	test: 0.4268029	best: 0.4268029 (287)	total: 1m 45s	remaining: 4m 20s
288:	learn: 0.4272049	test: 0.4267927	best: 0.4267927 (288)	total: 1m 45s	remaining: 4m 19s
289:	learn: 0.4271941	test: 0.4267828	best: 0.4267828 (289)	total: 1m 45s	remaining: 4m 18s
290:	learn: 0.4271837	test: 0.4267731	best: 0.4267731 (290)	total: 1m 45s	remaining: 4m 17s
291:	learn: 0.4271735	test: 0.4267636	best: 0.4267636 (291)	total: 1m 45s	remaining: 4m 16s
292:	learn: 0.4271636	test: 0.4267542	best: 0.4267542 (292)	total: 1m 45s	remaining: 4m 15s
293:	learn: 0.4271539	test: 0.4267450	best: 0.4267450 (293)	total: 1m 45s	remaining: 4m 14s
294:	learn: 0.4271443	test: 0.4267361	best: 0.4267361 (294)	total: 1m 45s	remaining: 4m 13s
295:	learn: 0.4271350	test: 0.4267274	best: 0.4267274 (295)	total: 1m 46s	remaining: 4m 12s
296:	learn: 0.4271257	test: 0.4267188	best: 0.4267188 (296)	total: 1m 46s	remaining: 4m 11s
297:	learn: 0.4271159	test: 0.4267105	best: 0.4267105 (297)	total: 1m 46s	remaining: 4m 10s
298:	learn: 0.4271071	test: 0.4267023	best: 0.4267023 (298)	total: 1m 46s	remaining: 4m 9s
299:	learn: 0.4270985	test: 0.4266942	best: 0.4266942 (299)	total: 1m 46s	remaining: 4m 8s
300:	learn: 0.4270901	test: 0.4266863	best: 0.4266863 (300)	total: 1m 46s	remaining: 4m 7s
301:	learn: 0.4270818	test: 0.4266786	best: 0.4266786 (301)	total: 1m 46s	remaining: 4m 6s
302:	learn: 0.4270729	test: 0.4266710	best: 0.4266710 (302)	total: 1m 46s	remaining: 4m 6s
303:	learn: 0.4270649	test: 0.4266636	best: 0.4266636 (303)	total: 1m 47s	remaining: 4m 4s
304:	learn: 0.4270568	test: 0.4266564	best: 0.4266564 (304)	total: 1m 47s	remaining: 4m 4s
305:	learn: 0.4270492	test: 0.4266493	best: 0.4266493 (305)	total: 1m 47s	remaining: 4m 3s
306:	learn: 0.4270418	test: 0.4266424	best: 0.4266424 (306)	total: 1m 47s	remaining: 4m 2s
307:	learn: 0.4270344	test: 0.4266356	best: 0.4266356 (307)	total: 1m 47s	remaining: 4m 1s
308:	learn: 0.4270262	test: 0.4266291	best: 0.4266291 (308)	total: 1m 47s	remaining: 4m 1s
309:	learn: 0.4270186	test: 0.4266226	best: 0.4266226 (309)	total: 1m 48s	remaining: 4m
310:	learn: 0.4270114	test: 0.4266162	best: 0.4266162 (310)	total: 1m 48s	remaining: 4m
311:	learn: 0.4270047	test: 0.4266100	best: 0.4266100 (311)	total: 1m 48s	remaining: 3m 59s
312:	learn: 0.4269981	test: 0.4266039	best: 0.4266039 (312)	total: 1m 48s	remaining: 3m 58s
313:	learn: 0.4269916	test: 0.4265979	best: 0.4265979 (313)	total: 1m 48s	remaining: 3m 57s
314:	learn: 0.4269853	test: 0.4265920	best: 0.4265920 (314)	total: 1m 48s	remaining: 3m 56s
315:	learn: 0.4269791	test: 0.4265863	best: 0.4265863 (315)	total: 1m 48s	remaining: 3m 55s
316:	learn: 0.4269730	test: 0.4265807	best: 0.4265807 (316)	total: 1m 48s	remaining: 3m 54s
317:	learn: 0.4269670	test: 0.4265752	best: 0.4265752 (317)	total: 1m 48s	remaining: 3m 53s
318:	learn: 0.4269612	test: 0.4265698	best: 0.4265698 (318)	total: 1m 49s	remaining: 3m 52s
319:	learn: 0.4269555	test: 0.4265645	best: 0.4265645 (319)	total: 1m 49s	remaining: 3m 51s
320:	learn: 0.4269499	test: 0.4265593	best: 0.4265593 (320)	total: 1m 49s	remaining: 3m 50s
321:	learn: 0.4269436	test: 0.4265542	best: 0.4265542 (321)	total: 1m 49s	remaining: 3m 50s
322:	learn: 0.4269382	test: 0.4265493	best: 0.4265493 (322)	total: 1m 49s	remaining: 3m 49s
323:	learn: 0.4269329	test: 0.4265444	best: 0.4265444 (323)	total: 1m 49s	remaining: 3m 48s
324:	learn: 0.4269277	test: 0.4265397	best: 0.4265397 (324)	total: 1m 49s	remaining: 3m 47s
325:	learn: 0.4269226	test: 0.4265350	best: 0.4265350 (325)	total: 1m 49s	remaining: 3m 47s
326:	learn: 0.4269177	test: 0.4265305	best: 0.4265305 (326)	total: 1m 49s	remaining: 3m 46s
327:	learn: 0.4269128	test: 0.4265260	best: 0.4265260 (327)	total: 1m 50s	remaining: 3m 45s
328:	learn: 0.4269080	test: 0.4265217	best: 0.4265217 (328)	total: 1m 50s	remaining: 3m 44s
329:	learn: 0.4269034	test: 0.4265174	best: 0.4265174 (329)	total: 1m 50s	remaining: 3m 43s
330:	learn: 0.4268980	test: 0.4265133	best: 0.4265133 (330)	total: 1m 50s	remaining: 3m 43s
331:	learn: 0.4268935	test: 0.4265092	best: 0.4265092 (331)	total: 1m 50s	remaining: 3m 42s
332:	learn: 0.4268891	test: 0.4265052	best: 0.4265052 (332)	total: 1m 50s	remaining: 3m 41s
333:	learn: 0.4268848	test: 0.4265012	best: 0.4265012 (333)	total: 1m 50s	remaining: 3m 41s
334:	learn: 0.4268806	test: 0.4264974	best: 0.4264974 (334)	total: 1m 50s	remaining: 3m 40s
335:	learn: 0.4268764	test: 0.4264937	best: 0.4264937 (335)	total: 1m 51s	remaining: 3m 39s
336:	learn: 0.4268724	test: 0.4264900	best: 0.4264900 (336)	total: 1m 51s	remaining: 3m 38s
337:	learn: 0.4268684	test: 0.4264864	best: 0.4264864 (337)	total: 1m 51s	remaining: 3m 37s
338:	learn: 0.4268644	test: 0.4264828	best: 0.4264828 (338)	total: 1m 51s	remaining: 3m 36s
339:	learn: 0.4268605	test: 0.4264794	best: 0.4264794 (339)	total: 1m 51s	remaining: 3m 36s
340:	learn: 0.4268568	test: 0.4264760	best: 0.4264760 (340)	total: 1m 51s	remaining: 3m 35s
341:	learn: 0.4268531	test: 0.4264727	best: 0.4264727 (341)	total: 1m 51s	remaining: 3m 34s
342:	learn: 0.4268496	test: 0.4264695	best: 0.4264695 (342)	total: 1m 51s	remaining: 3m 33s
343:	learn: 0.4268460	test: 0.4264663	best: 0.4264663 (343)	total: 1m 51s	remaining: 3m 32s
344:	learn: 0.4268426	test: 0.4264632	best: 0.4264632 (344)	total: 1m 51s	remaining: 3m 31s
345:	learn: 0.4268392	test: 0.4264602	best: 0.4264602 (345)	total: 1m 51s	remaining: 3m 31s
346:	learn: 0.4268351	test: 0.4264572	best: 0.4264572 (346)	total: 1m 51s	remaining: 3m 30s
347:	learn: 0.4268317	test: 0.4264543	best: 0.4264543 (347)	total: 1m 51s	remaining: 3m 29s
348:	learn: 0.4268286	test: 0.4264515	best: 0.4264515 (348)	total: 1m 51s	remaining: 3m 28s
349:	learn: 0.4268254	test: 0.4264487	best: 0.4264487 (349)	total: 1m 52s	remaining: 3m 28s
350:	learn: 0.4268223	test: 0.4264460	best: 0.4264460 (350)	total: 1m 52s	remaining: 3m 27s
351:	learn: 0.4268193	test: 0.4264433	best: 0.4264433 (351)	total: 1m 52s	remaining: 3m 26s
352:	learn: 0.4268163	test: 0.4264407	best: 0.4264407 (352)	total: 1m 52s	remaining: 3m 25s
353:	learn: 0.4268134	test: 0.4264381	best: 0.4264381 (353)	total: 1m 52s	remaining: 3m 25s
354:	learn: 0.4268099	test: 0.4264354	best: 0.4264354 (354)	total: 1m 52s	remaining: 3m 24s
355:	learn: 0.4268071	test: 0.4264330	best: 0.4264330 (355)	total: 1m 52s	remaining: 3m 23s
356:	learn: 0.4268044	test: 0.4264306	best: 0.4264306 (356)	total: 1m 52s	remaining: 3m 22s
357:	learn: 0.4268017	test: 0.4264282	best: 0.4264282 (357)	total: 1m 52s	remaining: 3m 22s
358:	learn: 0.4267991	test: 0.4264259	best: 0.4264259 (358)	total: 1m 52s	remaining: 3m 21s
359:	learn: 0.4267964	test: 0.4264237	best: 0.4264237 (359)	total: 1m 52s	remaining: 3m 20s
360:	learn: 0.4267938	test: 0.4264215	best: 0.4264215 (360)	total: 1m 53s	remaining: 3m 20s
361:	learn: 0.4267914	test: 0.4264193	best: 0.4264193 (361)	total: 1m 53s	remaining: 3m 19s
362:	learn: 0.4267890	test: 0.4264172	best: 0.4264172 (362)	total: 1m 53s	remaining: 3m 18s
363:	learn: 0.4267867	test: 0.4264152	best: 0.4264152 (363)	total: 1m 53s	remaining: 3m 17s
364:	learn: 0.4267844	test: 0.4264131	best: 0.4264131 (364)	total: 1m 53s	remaining: 3m 17s
365:	learn: 0.4267821	test: 0.4264112	best: 0.4264112 (365)	total: 1m 53s	remaining: 3m 16s
366:	learn: 0.4267799	test: 0.4264092	best: 0.4264092 (366)	total: 1m 53s	remaining: 3m 15s
367:	learn: 0.4267777	test: 0.4264073	best: 0.4264073 (367)	total: 1m 53s	remaining: 3m 14s
368:	learn: 0.4267756	test: 0.4264055	best: 0.4264055 (368)	total: 1m 53s	remaining: 3m 14s
369:	learn: 0.4267735	test: 0.4264037	best: 0.4264037 (369)	total: 1m 53s	remaining: 3m 13s
370:	learn: 0.4267715	test: 0.4264019	best: 0.4264019 (370)	total: 1m 53s	remaining: 3m 12s
371:	learn: 0.4267687	test: 0.4264001	best: 0.4264001 (371)	total: 1m 53s	remaining: 3m 12s
372:	learn: 0.4267667	test: 0.4263984	best: 0.4263984 (372)	total: 1m 53s	remaining: 3m 11s
373:	learn: 0.4267648	test: 0.4263968	best: 0.4263968 (373)	total: 1m 53s	remaining: 3m 10s
374:	learn: 0.4267630	test: 0.4263952	best: 0.4263952 (374)	total: 1m 53s	remaining: 3m 9s
375:	learn: 0.4267611	test: 0.4263936	best: 0.4263936 (375)	total: 1m 54s	remaining: 3m 9s
376:	learn: 0.4267592	test: 0.4263920	best: 0.4263920 (376)	total: 1m 54s	remaining: 3m 8s
377:	learn: 0.4267574	test: 0.4263905	best: 0.4263905 (377)	total: 1m 54s	remaining: 3m 8s
378:	learn: 0.4267557	test: 0.4263890	best: 0.4263890 (378)	total: 1m 54s	remaining: 3m 7s
379:	learn: 0.4267540	test: 0.4263876	best: 0.4263876 (379)	total: 1m 54s	remaining: 3m 6s
380:	learn: 0.4267496	test: 0.4263861	best: 0.4263861 (380)	total: 1m 54s	remaining: 3m 6s
381:	learn: 0.4267480	test: 0.4263847	best: 0.4263847 (381)	total: 1m 54s	remaining: 3m 5s
382:	learn: 0.4267464	test: 0.4263833	best: 0.4263833 (382)	total: 1m 54s	remaining: 3m 5s
383:	learn: 0.4267448	test: 0.4263820	best: 0.4263820 (383)	total: 1m 54s	remaining: 3m 4s
384:	learn: 0.4267433	test: 0.4263807	best: 0.4263807 (384)	total: 1m 55s	remaining: 3m 3s
385:	learn: 0.4267418	test: 0.4263794	best: 0.4263794 (385)	total: 1m 55s	remaining: 3m 3s
386:	learn: 0.4267403	test: 0.4263781	best: 0.4263781 (386)	total: 1m 55s	remaining: 3m 2s
387:	learn: 0.4267388	test: 0.4263769	best: 0.4263769 (387)	total: 1m 55s	remaining: 3m 1s
388:	learn: 0.4267374	test: 0.4263757	best: 0.4263757 (388)	total: 1m 55s	remaining: 3m 1s
389:	learn: 0.4267361	test: 0.4263746	best: 0.4263746 (389)	total: 1m 55s	remaining: 3m
390:	learn: 0.4267347	test: 0.4263734	best: 0.4263734 (390)	total: 1m 55s	remaining: 2m 59s
391:	learn: 0.4267334	test: 0.4263723	best: 0.4263723 (391)	total: 1m 55s	remaining: 2m 59s
392:	learn: 0.4267320	test: 0.4263712	best: 0.4263712 (392)	total: 1m 55s	remaining: 2m 58s
393:	learn: 0.4267308	test: 0.4263701	best: 0.4263701 (393)	total: 1m 55s	remaining: 2m 57s
394:	learn: 0.4267295	test: 0.4263691	best: 0.4263691 (394)	total: 1m 55s	remaining: 2m 57s
395:	learn: 0.4267282	test: 0.4263681	best: 0.4263681 (395)	total: 1m 55s	remaining: 2m 56s
396:	learn: 0.4267270	test: 0.4263671	best: 0.4263671 (396)	total: 1m 56s	remaining: 2m 56s
397:	learn: 0.4267258	test: 0.4263661	best: 0.4263661 (397)	total: 1m 56s	remaining: 2m 55s
398:	learn: 0.4267246	test: 0.4263651	best: 0.4263651 (398)	total: 1m 56s	remaining: 2m 55s
399:	learn: 0.4267233	test: 0.4263642	best: 0.4263642 (399)	total: 1m 56s	remaining: 2m 54s
400:	learn: 0.4267222	test: 0.4263633	best: 0.4263633 (400)	total: 1m 56s	remaining: 2m 53s
401:	learn: 0.4267211	test: 0.4263624	best: 0.4263624 (401)	total: 1m 56s	remaining: 2m 53s
402:	learn: 0.4267193	test: 0.4263615	best: 0.4263615 (402)	total: 1m 56s	remaining: 2m 52s
403:	learn: 0.4267183	test: 0.4263606	best: 0.4263606 (403)	total: 1m 56s	remaining: 2m 52s
404:	learn: 0.4267172	test: 0.4263598	best: 0.4263598 (404)	total: 1m 56s	remaining: 2m 51s
405:	learn: 0.4267162	test: 0.4263590	best: 0.4263590 (405)	total: 1m 56s	remaining: 2m 51s
406:	learn: 0.4267153	test: 0.4263582	best: 0.4263582 (406)	total: 1m 57s	remaining: 2m 50s
407:	learn: 0.4267138	test: 0.4263570	best: 0.4263570 (407)	total: 1m 57s	remaining: 2m 50s
408:	learn: 0.4267129	test: 0.4263562	best: 0.4263562 (408)	total: 1m 57s	remaining: 2m 49s
409:	learn: 0.4267119	test: 0.4263554	best: 0.4263554 (409)	total: 1m 57s	remaining: 2m 49s
410:	learn: 0.4267110	test: 0.4263547	best: 0.4263547 (410)	total: 1m 57s	remaining: 2m 48s
411:	learn: 0.4267101	test: 0.4263540	best: 0.4263540 (411)	total: 1m 57s	remaining: 2m 48s
412:	learn: 0.4267093	test: 0.4263533	best: 0.4263533 (412)	total: 1m 57s	remaining: 2m 47s
413:	learn: 0.4267084	test: 0.4263526	best: 0.4263526 (413)	total: 1m 57s	remaining: 2m 46s
414:	learn: 0.4267076	test: 0.4263519	best: 0.4263519 (414)	total: 1m 57s	remaining: 2m 46s
415:	learn: 0.4267067	test: 0.4263513	best: 0.4263513 (415)	total: 1m 58s	remaining: 2m 45s
416:	learn: 0.4267059	test: 0.4263506	best: 0.4263506 (416)	total: 1m 58s	remaining: 2m 45s
417:	learn: 0.4267052	test: 0.4263500	best: 0.4263500 (417)	total: 1m 58s	remaining: 2m 44s
418:	learn: 0.4267043	test: 0.4263494	best: 0.4263494 (418)	total: 1m 58s	remaining: 2m 44s
419:	learn: 0.4267036	test: 0.4263488	best: 0.4263488 (419)	total: 1m 58s	remaining: 2m 43s
420:	learn: 0.4267028	test: 0.4263482	best: 0.4263482 (420)	total: 1m 58s	remaining: 2m 42s
421:	learn: 0.4267021	test: 0.4263477	best: 0.4263477 (421)	total: 1m 58s	remaining: 2m 42s
422:	learn: 0.4267014	test: 0.4263471	best: 0.4263471 (422)	total: 1m 58s	remaining: 2m 41s
423:	learn: 0.4267007	test: 0.4263465	best: 0.4263465 (423)	total: 1m 58s	remaining: 2m 41s
424:	learn: 0.4267000	test: 0.4263460	best: 0.4263460 (424)	total: 1m 58s	remaining: 2m 40s
425:	learn: 0.4266994	test: 0.4263455	best: 0.4263455 (425)	total: 1m 58s	remaining: 2m 39s
426:	learn: 0.4266987	test: 0.4263450	best: 0.4263450 (426)	total: 1m 58s	remaining: 2m 39s
427:	learn: 0.4266981	test: 0.4263445	best: 0.4263445 (427)	total: 1m 58s	remaining: 2m 38s
428:	learn: 0.4266974	test: 0.4263440	best: 0.4263440 (428)	total: 1m 58s	remaining: 2m 38s
429:	learn: 0.4266968	test: 0.4263435	best: 0.4263435 (429)	total: 1m 58s	remaining: 2m 37s
430:	learn: 0.4266962	test: 0.4263431	best: 0.4263431 (430)	total: 1m 59s	remaining: 2m 37s
431:	learn: 0.4266956	test: 0.4263426	best: 0.4263426 (431)	total: 1m 59s	remaining: 2m 36s
432:	learn: 0.4266950	test: 0.4263422	best: 0.4263422 (432)	total: 1m 59s	remaining: 2m 36s
433:	learn: 0.4266945	test: 0.4263417	best: 0.4263417 (433)	total: 1m 59s	remaining: 2m 35s
434:	learn: 0.4266939	test: 0.4263413	best: 0.4263413 (434)	total: 1m 59s	remaining: 2m 34s
435:	learn: 0.4266933	test: 0.4263409	best: 0.4263409 (435)	total: 1m 59s	remaining: 2m 34s
436:	learn: 0.4266928	test: 0.4263405	best: 0.4263405 (436)	total: 1m 59s	remaining: 2m 33s
437:	learn: 0.4266918	test: 0.4263401	best: 0.4263401 (437)	total: 1m 59s	remaining: 2m 33s
438:	learn: 0.4266912	test: 0.4263397	best: 0.4263397 (438)	total: 1m 59s	remaining: 2m 32s
439:	learn: 0.4266907	test: 0.4263393	best: 0.4263393 (439)	total: 1m 59s	remaining: 2m 32s
440:	learn: 0.4266902	test: 0.4263390	best: 0.4263390 (440)	total: 1m 59s	remaining: 2m 31s
441:	learn: 0.4266898	test: 0.4263386	best: 0.4263386 (441)	total: 1m 59s	remaining: 2m 31s
442:	learn: 0.4266893	test: 0.4263383	best: 0.4263383 (442)	total: 1m 59s	remaining: 2m 30s
443:	learn: 0.4266888	test: 0.4263379	best: 0.4263379 (443)	total: 1m 59s	remaining: 2m 30s
444:	learn: 0.4266884	test: 0.4263376	best: 0.4263376 (444)	total: 1m 59s	remaining: 2m 29s
445:	learn: 0.4266879	test: 0.4263373	best: 0.4263373 (445)	total: 2m	remaining: 2m 29s
446:	learn: 0.4266875	test: 0.4263369	best: 0.4263369 (446)	total: 2m	remaining: 2m 28s
447:	learn: 0.4266870	test: 0.4263366	best: 0.4263366 (447)	total: 2m	remaining: 2m 28s
448:	learn: 0.4266866	test: 0.4263363	best: 0.4263363 (448)	total: 2m	remaining: 2m 27s
449:	learn: 0.4266862	test: 0.4263360	best: 0.4263360 (449)	total: 2m	remaining: 2m 27s
450:	learn: 0.4266858	test: 0.4263357	best: 0.4263357 (450)	total: 2m	remaining: 2m 26s
451:	learn: 0.4266854	test: 0.4263355	best: 0.4263355 (451)	total: 2m	remaining: 2m 26s
452:	learn: 0.4266850	test: 0.4263352	best: 0.4263352 (452)	total: 2m	remaining: 2m 25s
453:	learn: 0.4266846	test: 0.4263349	best: 0.4263349 (453)	total: 2m	remaining: 2m 24s
454:	learn: 0.4266843	test: 0.4263347	best: 0.4263347 (454)	total: 2m	remaining: 2m 24s
455:	learn: 0.4266839	test: 0.4263344	best: 0.4263344 (455)	total: 2m	remaining: 2m 23s
456:	learn: 0.4266835	test: 0.4263342	best: 0.4263342 (456)	total: 2m	remaining: 2m 23s
457:	learn: 0.4266832	test: 0.4263339	best: 0.4263339 (457)	total: 2m	remaining: 2m 22s
458:	learn: 0.4266829	test: 0.4263337	best: 0.4263337 (458)	total: 2m	remaining: 2m 22s
459:	learn: 0.4266825	test: 0.4263334	best: 0.4263334 (459)	total: 2m	remaining: 2m 21s
460:	learn: 0.4266822	test: 0.4263332	best: 0.4263332 (460)	total: 2m 1s	remaining: 2m 21s
461:	learn: 0.4266819	test: 0.4263330	best: 0.4263330 (461)	total: 2m 1s	remaining: 2m 21s
462:	learn: 0.4266815	test: 0.4263328	best: 0.4263328 (462)	total: 2m 1s	remaining: 2m 20s
463:	learn: 0.4266812	test: 0.4263326	best: 0.4263326 (463)	total: 2m 1s	remaining: 2m 20s
464:	learn: 0.4266807	test: 0.4263324	best: 0.4263324 (464)	total: 2m 1s	remaining: 2m 19s
465:	learn: 0.4266804	test: 0.4263322	best: 0.4263322 (465)	total: 2m 1s	remaining: 2m 19s
466:	learn: 0.4266801	test: 0.4263320	best: 0.4263320 (466)	total: 2m 1s	remaining: 2m 18s
467:	learn: 0.4266798	test: 0.4263318	best: 0.4263318 (467)	total: 2m 1s	remaining: 2m 18s
468:	learn: 0.4266795	test: 0.4263316	best: 0.4263316 (468)	total: 2m 1s	remaining: 2m 17s
469:	learn: 0.4266793	test: 0.4263314	best: 0.4263314 (469)	total: 2m 1s	remaining: 2m 17s
470:	learn: 0.4266790	test: 0.4263312	best: 0.4263312 (470)	total: 2m 1s	remaining: 2m 16s
471:	learn: 0.4266787	test: 0.4263311	best: 0.4263311 (471)	total: 2m 1s	remaining: 2m 16s
472:	learn: 0.4266785	test: 0.4263309	best: 0.4263309 (472)	total: 2m 1s	remaining: 2m 15s
473:	learn: 0.4266782	test: 0.4263307	best: 0.4263307 (473)	total: 2m 2s	remaining: 2m 15s
474:	learn: 0.4266780	test: 0.4263306	best: 0.4263306 (474)	total: 2m 2s	remaining: 2m 14s
475:	learn: 0.4266777	test: 0.4263304	best: 0.4263304 (475)	total: 2m 2s	remaining: 2m 14s
476:	learn: 0.4266775	test: 0.4263303	best: 0.4263303 (476)	total: 2m 2s	remaining: 2m 14s
477:	learn: 0.4266772	test: 0.4263301	best: 0.4263301 (477)	total: 2m 2s	remaining: 2m 13s
478:	learn: 0.4266770	test: 0.4263300	best: 0.4263300 (478)	total: 2m 2s	remaining: 2m 13s
479:	learn: 0.4266768	test: 0.4263298	best: 0.4263298 (479)	total: 2m 2s	remaining: 2m 12s
480:	learn: 0.4266766	test: 0.4263297	best: 0.4263297 (480)	total: 2m 2s	remaining: 2m 12s
481:	learn: 0.4266763	test: 0.4263296	best: 0.4263296 (481)	total: 2m 2s	remaining: 2m 11s
482:	learn: 0.4266761	test: 0.4263294	best: 0.4263294 (482)	total: 2m 2s	remaining: 2m 11s
483:	learn: 0.4266755	test: 0.4263293	best: 0.4263293 (483)	total: 2m 2s	remaining: 2m 10s
484:	learn: 0.4266753	test: 0.4263292	best: 0.4263292 (484)	total: 2m 2s	remaining: 2m 10s
485:	learn: 0.4266751	test: 0.4263291	best: 0.4263291 (485)	total: 2m 2s	remaining: 2m 9s
486:	learn: 0.4266749	test: 0.4263289	best: 0.4263289 (486)	total: 2m 2s	remaining: 2m 9s
487:	learn: 0.4266747	test: 0.4263288	best: 0.4263288 (487)	total: 2m 3s	remaining: 2m 9s
488:	learn: 0.4266745	test: 0.4263287	best: 0.4263287 (488)	total: 2m 3s	remaining: 2m 8s
489:	learn: 0.4266743	test: 0.4263286	best: 0.4263286 (489)	total: 2m 3s	remaining: 2m 8s
490:	learn: 0.4266741	test: 0.4263285	best: 0.4263285 (490)	total: 2m 3s	remaining: 2m 7s
491:	learn: 0.4266740	test: 0.4263284	best: 0.4263284 (491)	total: 2m 3s	remaining: 2m 7s
492:	learn: 0.4266738	test: 0.4263283	best: 0.4263283 (492)	total: 2m 3s	remaining: 2m 6s
493:	learn: 0.4266736	test: 0.4263282	best: 0.4263282 (493)	total: 2m 3s	remaining: 2m 6s
494:	learn: 0.4266735	test: 0.4263281	best: 0.4263281 (494)	total: 2m 3s	remaining: 2m 6s
495:	learn: 0.4266733	test: 0.4263280	best: 0.4263280 (495)	total: 2m 3s	remaining: 2m 5s
496:	learn: 0.4266731	test: 0.4263279	best: 0.4263279 (496)	total: 2m 3s	remaining: 2m 5s
497:	learn: 0.4266730	test: 0.4263279	best: 0.4263279 (497)	total: 2m 3s	remaining: 2m 4s
498:	learn: 0.4266728	test: 0.4263278	best: 0.4263278 (498)	total: 2m 3s	remaining: 2m 4s
499:	learn: 0.4266727	test: 0.4263277	best: 0.4263277 (499)	total: 2m 3s	remaining: 2m 3s
500:	learn: 0.4266725	test: 0.4263276	best: 0.4263276 (500)	total: 2m 3s	remaining: 2m 3s
501:	learn: 0.4266724	test: 0.4263275	best: 0.4263275 (501)	total: 2m 3s	remaining: 2m 3s
502:	learn: 0.4266722	test: 0.4263275	best: 0.4263275 (502)	total: 2m 4s	remaining: 2m 2s
503:	learn: 0.4266720	test: 0.4263274	best: 0.4263274 (503)	total: 2m 4s	remaining: 2m 2s
504:	learn: 0.4266719	test: 0.4263273	best: 0.4263273 (504)	total: 2m 4s	remaining: 2m 1s
505:	learn: 0.4266717	test: 0.4263273	best: 0.4263273 (505)	total: 2m 4s	remaining: 2m 1s
506:	learn: 0.4266716	test: 0.4263272	best: 0.4263272 (506)	total: 2m 4s	remaining: 2m
507:	learn: 0.4266714	test: 0.4263271	best: 0.4263271 (507)	total: 2m 4s	remaining: 2m
508:	learn: 0.4266713	test: 0.4263271	best: 0.4263271 (508)	total: 2m 4s	remaining: 2m
509:	learn: 0.4266712	test: 0.4263270	best: 0.4263270 (509)	total: 2m 4s	remaining: 1m 59s
510:	learn: 0.4266710	test: 0.4263269	best: 0.4263269 (510)	total: 2m 4s	remaining: 1m 59s
511:	learn: 0.4266709	test: 0.4263269	best: 0.4263269 (511)	total: 2m 4s	remaining: 1m 59s
512:	learn: 0.4266708	test: 0.4263268	best: 0.4263268 (512)	total: 2m 4s	remaining: 1m 58s
513:	learn: 0.4266707	test: 0.4263268	best: 0.4263268 (513)	total: 2m 4s	remaining: 1m 58s
514:	learn: 0.4266706	test: 0.4263267	best: 0.4263267 (514)	total: 2m 5s	remaining: 1m 57s
515:	learn: 0.4266705	test: 0.4263267	best: 0.4263267 (515)	total: 2m 5s	remaining: 1m 57s
516:	learn: 0.4266704	test: 0.4263266	best: 0.4263266 (516)	total: 2m 5s	remaining: 1m 56s
517:	learn: 0.4266702	test: 0.4263266	best: 0.4263266 (517)	total: 2m 5s	remaining: 1m 56s
518:	learn: 0.4266701	test: 0.4263265	best: 0.4263265 (518)	total: 2m 5s	remaining: 1m 56s
519:	learn: 0.4266700	test: 0.4263265	best: 0.4263265 (519)	total: 2m 5s	remaining: 1m 55s
520:	learn: 0.4266699	test: 0.4263265	best: 0.4263265 (520)	total: 2m 5s	remaining: 1m 55s
521:	learn: 0.4266698	test: 0.4263264	best: 0.4263264 (521)	total: 2m 5s	remaining: 1m 54s
522:	learn: 0.4266697	test: 0.4263264	best: 0.4263264 (522)	total: 2m 5s	remaining: 1m 54s
523:	learn: 0.4266696	test: 0.4263263	best: 0.4263263 (523)	total: 2m 5s	remaining: 1m 54s
524:	learn: 0.4266695	test: 0.4263263	best: 0.4263263 (524)	total: 2m 5s	remaining: 1m 53s
525:	learn: 0.4266694	test: 0.4263263	best: 0.4263263 (525)	total: 2m 5s	remaining: 1m 53s
526:	learn: 0.4266693	test: 0.4263262	best: 0.4263262 (526)	total: 2m 5s	remaining: 1m 52s
527:	learn: 0.4266693	test: 0.4263262	best: 0.4263262 (527)	total: 2m 5s	remaining: 1m 52s
528:	learn: 0.4266692	test: 0.4263262	best: 0.4263262 (528)	total: 2m 5s	remaining: 1m 52s
529:	learn: 0.4266691	test: 0.4263261	best: 0.4263261 (529)	total: 2m 6s	remaining: 1m 51s
530:	learn: 0.4266690	test: 0.4263261	best: 0.4263261 (530)	total: 2m 6s	remaining: 1m 51s
531:	learn: 0.4266689	test: 0.4263261	best: 0.4263261 (531)	total: 2m 6s	remaining: 1m 51s
532:	learn: 0.4266688	test: 0.4263261	best: 0.4263261 (532)	total: 2m 6s	remaining: 1m 50s
533:	learn: 0.4266688	test: 0.4263260	best: 0.4263260 (533)	total: 2m 6s	remaining: 1m 50s
534:	learn: 0.4266687	test: 0.4263260	best: 0.4263260 (534)	total: 2m 6s	remaining: 1m 49s
535:	learn: 0.4266686	test: 0.4263260	best: 0.4263260 (535)	total: 2m 6s	remaining: 1m 49s
536:	learn: 0.4266686	test: 0.4263260	best: 0.4263260 (536)	total: 2m 6s	remaining: 1m 49s
537:	learn: 0.4266685	test: 0.4263259	best: 0.4263259 (537)	total: 2m 6s	remaining: 1m 48s
538:	learn: 0.4266684	test: 0.4263259	best: 0.4263259 (538)	total: 2m 6s	remaining: 1m 48s
539:	learn: 0.4266683	test: 0.4263259	best: 0.4263259 (539)	total: 2m 6s	remaining: 1m 48s
540:	learn: 0.4266683	test: 0.4263259	best: 0.4263259 (540)	total: 2m 6s	remaining: 1m 47s
541:	learn: 0.4266682	test: 0.4263259	best: 0.4263259 (541)	total: 2m 6s	remaining: 1m 47s
542:	learn: 0.4266682	test: 0.4263258	best: 0.4263258 (542)	total: 2m 7s	remaining: 1m 46s
543:	learn: 0.4266681	test: 0.4263258	best: 0.4263258 (543)	total: 2m 7s	remaining: 1m 46s
544:	learn: 0.4266680	test: 0.4263258	best: 0.4263258 (544)	total: 2m 7s	remaining: 1m 46s
545:	learn: 0.4266680	test: 0.4263258	best: 0.4263258 (545)	total: 2m 7s	remaining: 1m 45s
546:	learn: 0.4266679	test: 0.4263258	best: 0.4263258 (546)	total: 2m 7s	remaining: 1m 45s
547:	learn: 0.4266679	test: 0.4263258	best: 0.4263258 (547)	total: 2m 7s	remaining: 1m 45s
548:	learn: 0.4266678	test: 0.4263257	best: 0.4263257 (548)	total: 2m 7s	remaining: 1m 44s
549:	learn: 0.4266677	test: 0.4263257	best: 0.4263257 (549)	total: 2m 7s	remaining: 1m 44s
550:	learn: 0.4266677	test: 0.4263257	best: 0.4263257 (550)	total: 2m 7s	remaining: 1m 44s
551:	learn: 0.4266676	test: 0.4263257	best: 0.4263257 (551)	total: 2m 7s	remaining: 1m 43s
552:	learn: 0.4266676	test: 0.4263257	best: 0.4263257 (552)	total: 2m 7s	remaining: 1m 43s
553:	learn: 0.4266675	test: 0.4263257	best: 0.4263257 (553)	total: 2m 7s	remaining: 1m 42s
554:	learn: 0.4266675	test: 0.4263257	best: 0.4263257 (554)	total: 2m 7s	remaining: 1m 42s
555:	learn: 0.4266674	test: 0.4263257	best: 0.4263257 (555)	total: 2m 7s	remaining: 1m 42s
556:	learn: 0.4266674	test: 0.4263257	best: 0.4263257 (556)	total: 2m 8s	remaining: 1m 41s
557:	learn: 0.4266673	test: 0.4263256	best: 0.4263256 (557)	total: 2m 8s	remaining: 1m 41s
558:	learn: 0.4266673	test: 0.4263256	best: 0.4263256 (558)	total: 2m 8s	remaining: 1m 41s
559:	learn: 0.4266672	test: 0.4263256	best: 0.4263256 (559)	total: 2m 8s	remaining: 1m 40s
560:	learn: 0.4266672	test: 0.4263256	best: 0.4263256 (560)	total: 2m 8s	remaining: 1m 40s
561:	learn: 0.4266672	test: 0.4263256	best: 0.4263256 (561)	total: 2m 8s	remaining: 1m 40s
562:	learn: 0.4266671	test: 0.4263256	best: 0.4263256 (562)	total: 2m 8s	remaining: 1m 39s
563:	learn: 0.4266671	test: 0.4263256	best: 0.4263256 (563)	total: 2m 8s	remaining: 1m 39s
564:	learn: 0.4266670	test: 0.4263256	best: 0.4263256 (564)	total: 2m 8s	remaining: 1m 39s
565:	learn: 0.4266670	test: 0.4263256	best: 0.4263256 (565)	total: 2m 8s	remaining: 1m 38s
566:	learn: 0.4266669	test: 0.4263256	best: 0.4263256 (566)	total: 2m 8s	remaining: 1m 38s
567:	learn: 0.4266669	test: 0.4263256	best: 0.4263256 (567)	total: 2m 8s	remaining: 1m 38s
568:	learn: 0.4266669	test: 0.4263256	best: 0.4263256 (568)	total: 2m 8s	remaining: 1m 37s
569:	learn: 0.4266668	test: 0.4263256	best: 0.4263256 (569)	total: 2m 8s	remaining: 1m 37s
570:	learn: 0.4266668	test: 0.4263256	best: 0.4263256 (570)	total: 2m 9s	remaining: 1m 36s
571:	learn: 0.4266668	test: 0.4263256	best: 0.4263256 (571)	total: 2m 9s	remaining: 1m 36s
572:	learn: 0.4266667	test: 0.4263256	best: 0.4263256 (572)	total: 2m 9s	remaining: 1m 36s
573:	learn: 0.4266667	test: 0.4263256	best: 0.4263256 (573)	total: 2m 9s	remaining: 1m 35s
574:	learn: 0.4266667	test: 0.4263256	best: 0.4263256 (574)	total: 2m 9s	remaining: 1m 35s
575:	learn: 0.4266666	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 35s
576:	learn: 0.4266666	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 34s
577:	learn: 0.4266666	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 34s
578:	learn: 0.4266665	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 34s
579:	learn: 0.4266665	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 33s
580:	learn: 0.4266665	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 33s
581:	learn: 0.4266664	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 33s
582:	learn: 0.4266664	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 32s
583:	learn: 0.4266664	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 32s
584:	learn: 0.4266663	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 32s
585:	learn: 0.4266663	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 31s
586:	learn: 0.4266663	test: 0.4263256	best: 0.4263256 (575)	total: 2m 9s	remaining: 1m 31s
587:	learn: 0.4266663	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 31s
588:	learn: 0.4266662	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 30s
589:	learn: 0.4266662	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 30s
590:	learn: 0.4266662	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 30s
591:	learn: 0.4266662	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 29s
592:	learn: 0.4266661	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 29s
593:	learn: 0.4266661	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 29s
594:	learn: 0.4266661	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 28s
595:	learn: 0.4266661	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 28s
596:	learn: 0.4266661	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 28s
597:	learn: 0.4266660	test: 0.4263256	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 27s
598:	learn: 0.4266660	test: 0.4263257	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 27s
599:	learn: 0.4266660	test: 0.4263257	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 27s
600:	learn: 0.4266660	test: 0.4263257	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 26s
601:	learn: 0.4266659	test: 0.4263257	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 26s
602:	learn: 0.4266659	test: 0.4263257	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 26s
603:	learn: 0.4266659	test: 0.4263257	best: 0.4263256 (575)	total: 2m 10s	remaining: 1m 25s
604:	learn: 0.4266659	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 25s
605:	learn: 0.4266659	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 25s
606:	learn: 0.4266659	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 24s
607:	learn: 0.4266658	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 24s
608:	learn: 0.4266658	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 24s
609:	learn: 0.4266658	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 23s
610:	learn: 0.4266658	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 23s
611:	learn: 0.4266658	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 23s
612:	learn: 0.4266658	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 23s
613:	learn: 0.4266657	test: 0.4263257	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 22s
614:	learn: 0.4266657	test: 0.4263258	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 22s
615:	learn: 0.4266657	test: 0.4263258	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 22s
616:	learn: 0.4266657	test: 0.4263258	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 21s
617:	learn: 0.4266657	test: 0.4263258	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 21s
618:	learn: 0.4266657	test: 0.4263258	best: 0.4263256 (575)	total: 2m 11s	remaining: 1m 21s
619:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 20s
620:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 20s
621:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 20s
622:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 20s
623:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 19s
624:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 19s
625:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 19s
626:	learn: 0.4266656	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 18s
627:	learn: 0.4266655	test: 0.4263258	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 18s
628:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 18s
629:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 17s
630:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 17s
631:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 17s
632:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 17s
633:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 12s	remaining: 1m 16s
634:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 16s
635:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 16s
636:	learn: 0.4266655	test: 0.4263259	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 15s
637:	learn: 0.4266654	test: 0.4263259	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 15s
638:	learn: 0.4266654	test: 0.4263259	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 15s
639:	learn: 0.4266654	test: 0.4263259	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 15s
640:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 14s
641:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 14s
642:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 14s
643:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 13s
644:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 13s
645:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 13s
646:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 13s
647:	learn: 0.4266654	test: 0.4263260	best: 0.4263256 (575)	total: 2m 13s	remaining: 1m 12s
648:	learn: 0.4266653	test: 0.4263260	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 12s
649:	learn: 0.4266653	test: 0.4263260	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 12s
650:	learn: 0.4266653	test: 0.4263260	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 11s
651:	learn: 0.4266653	test: 0.4263260	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 11s
652:	learn: 0.4266653	test: 0.4263260	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 11s
653:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 11s
654:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 10s
655:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 10s
656:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 10s
657:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 9s
658:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 9s
659:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 9s
660:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 9s
661:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 8s
662:	learn: 0.4266653	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 8s
663:	learn: 0.4266652	test: 0.4263261	best: 0.4263256 (575)	total: 2m 14s	remaining: 1m 8s
664:	learn: 0.4266652	test: 0.4263261	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 8s
665:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 7s
666:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 7s
667:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 7s
668:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 6s
669:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 6s
670:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 6s
671:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 6s
672:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 5s
673:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 5s
674:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 5s
675:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 5s
676:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 4s
677:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 4s
678:	learn: 0.4266652	test: 0.4263262	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 4s
679:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 15s	remaining: 1m 3s
680:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 3s
681:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 3s
682:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 3s
683:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 2s
684:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 2s
685:	learn: 0.4266652	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 2s
686:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 2s
687:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 1s
688:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 1s
689:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 1s
690:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m 1s
691:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m
692:	learn: 0.4266651	test: 0.4263263	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m
693:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m
694:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 16s	remaining: 1m
695:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 16s	remaining: 59.8s
696:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 16s	remaining: 59.6s
697:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 59.3s
698:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 59s
699:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 58.8s
700:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 58.5s
701:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 58.3s
702:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 58s
703:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 57.8s
704:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 57.5s
705:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 57.3s
706:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 57s
707:	learn: 0.4266651	test: 0.4263264	best: 0.4263256 (575)	total: 2m 17s	remaining: 56.8s
708:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 56.5s
709:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 56.3s
710:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 56s
711:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 55.7s
712:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 55.5s
713:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 55.2s
714:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 17s	remaining: 55s
715:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 54.8s
716:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 54.5s
717:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 54.3s
718:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 54s
719:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 53.8s
720:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 53.5s
721:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 53.3s
722:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 53.1s
723:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 52.8s
724:	learn: 0.4266651	test: 0.4263265	best: 0.4263256 (575)	total: 2m 18s	remaining: 52.6s
725:	learn: 0.4266651	test: 0.4263266	best: 0.4263256 (575)	total: 2m 18s	remaining: 52.3s
726:	learn: 0.4266651	test: 0.4263266	best: 0.4263256 (575)	total: 2m 18s	remaining: 52.1s
727:	learn: 0.4266651	test: 0.4263266	best: 0.4263256 (575)	total: 2m 18s	remaining: 51.9s
728:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 18s	remaining: 51.6s
729:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 18s	remaining: 51.4s
730:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 18s	remaining: 51.1s
731:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 50.9s
732:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 50.7s
733:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 50.4s
734:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 50.2s
735:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 50s
736:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 49.7s
737:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 49.5s
738:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 49.3s
739:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 49s
740:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 48.8s
741:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 48.6s
742:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 48.4s
743:	learn: 0.4266650	test: 0.4263266	best: 0.4263256 (575)	total: 2m 19s	remaining: 48.1s
744:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 19s	remaining: 47.9s
745:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 19s	remaining: 47.7s
746:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 47.4s
747:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 47.2s
748:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 47s
749:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 46.8s
750:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 46.5s
751:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 46.3s
752:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 46.1s
753:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 45.9s
754:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 45.6s
755:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 45.4s
756:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 45.2s
757:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 45s
758:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 44.7s
759:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 20s	remaining: 44.5s
760:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 44.3s
761:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 44.1s
762:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 43.8s
763:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 43.6s
764:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 43.4s
765:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 43.2s
766:	learn: 0.4266650	test: 0.4263267	best: 0.4263256 (575)	total: 2m 21s	remaining: 43s
767:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 42.7s
768:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 42.5s
769:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 42.3s
770:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 42.1s
771:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 41.9s
772:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 41.6s
773:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 41.4s
774:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 41.2s
775:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 41s
776:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 21s	remaining: 40.7s
777:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 40.5s
778:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 40.3s
779:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 40.1s
780:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 39.9s
781:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 39.7s
782:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 39.4s
783:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 39.2s
784:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 39s
785:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 38.8s
786:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 38.6s
787:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 38.4s
788:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 38.1s
789:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 37.9s
790:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 37.7s
791:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 37.5s
792:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 37.3s
793:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 37.1s
794:	learn: 0.4266650	test: 0.4263268	best: 0.4263256 (575)	total: 2m 22s	remaining: 36.9s
795:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 36.7s
796:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 36.4s
797:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 36.2s
798:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 36s
799:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 35.8s
800:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 35.6s
801:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 35.4s
802:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 35.2s
803:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 35s
804:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 34.8s
805:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 34.6s
806:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 34.4s
807:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 34.1s
808:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 33.9s
809:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 33.7s
810:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 33.5s
811:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 33.3s
812:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 23s	remaining: 33.1s
813:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 32.9s
814:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 32.7s
815:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 32.5s
816:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 32.3s
817:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 32.1s
818:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 31.9s
819:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 31.7s
820:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 31.5s
821:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 31.3s
822:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 31.1s
823:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 30.9s
824:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 30.7s
825:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 30.5s
826:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 30.3s
827:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 24s	remaining: 30.1s
828:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 25s	remaining: 29.9s
829:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 25s	remaining: 29.7s
830:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 25s	remaining: 29.5s
831:	learn: 0.4266650	test: 0.4263269	best: 0.4263256 (575)	total: 2m 25s	remaining: 29.3s
832:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 29.1s
833:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 28.9s
834:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 28.7s
835:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 28.5s
836:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 28.3s
837:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 28.2s
838:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 28s
839:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 27.8s
840:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 27.6s
841:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 27.4s
842:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 25s	remaining: 27.2s
843:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 27s
844:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 26.8s
845:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 26.6s
846:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 26.4s
847:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 26.2s
848:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 26s
849:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 25.8s
850:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 25.6s
851:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 25.5s
852:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 25.3s
853:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 25.1s
854:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 24.9s
855:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 24.7s
856:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 24.5s
857:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 26s	remaining: 24.3s
858:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 24.1s
859:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 23.9s
860:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 23.8s
861:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 23.6s
862:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 23.4s
863:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 23.2s
864:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 23s
865:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 22.8s
866:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 22.6s
867:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 22.4s
868:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 22.3s
869:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 22.1s
870:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 21.9s
871:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 21.7s
872:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 21.5s
873:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 21.3s
874:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 27s	remaining: 21.1s
875:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 21s
876:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 20.8s
877:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 20.6s
878:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 20.4s
879:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 20.2s
880:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 20s
881:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 19.8s
882:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 19.7s
883:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 19.5s
884:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 19.3s
885:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 19.1s
886:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 18.9s
887:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 18.8s
888:	learn: 0.4266650	test: 0.4263270	best: 0.4263256 (575)	total: 2m 28s	remaining: 18.6s
889:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 28s	remaining: 18.4s
890:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 28s	remaining: 18.2s
891:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 28s	remaining: 18s
892:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 28s	remaining: 17.8s
893:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 28s	remaining: 17.7s
894:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 17.5s
895:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 17.3s
896:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 17.1s
897:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 16.9s
898:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 16.8s
899:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 16.6s
900:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 16.4s
901:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 16.2s
902:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 16.1s
903:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 15.9s
904:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 15.7s
905:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 15.5s
906:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 15.4s
907:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 15.2s
908:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 15s
909:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 29s	remaining: 14.8s
910:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 14.7s
911:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 14.5s
912:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 14.3s
913:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 14.1s
914:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 14s
915:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 13.8s
916:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 13.6s
917:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 13.4s
918:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 13.3s
919:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 13.1s
920:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 12.9s
921:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 12.8s
922:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 12.6s
923:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 12.4s
924:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 30s	remaining: 12.2s
925:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 12.1s
926:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 11.9s
927:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 11.7s
928:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 11.6s
929:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 11.4s
930:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 11.2s
931:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 11s
932:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 10.9s
933:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 10.7s
934:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 10.5s
935:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 10.4s
936:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 10.2s
937:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 10s
938:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 9.87s
939:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 31s	remaining: 9.7s
940:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 9.53s
941:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 9.36s
942:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 9.2s
943:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 9.03s
944:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 8.86s
945:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 8.7s
946:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 8.53s
947:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 8.36s
948:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 8.2s
949:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 8.03s
950:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 7.87s
951:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 7.7s
952:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 7.54s
953:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 7.37s
954:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 32s	remaining: 7.21s
955:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 7.04s
956:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 6.88s
957:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 6.71s
958:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 6.55s
959:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 6.38s
960:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 6.22s
961:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 6.06s
962:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 5.89s
963:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 5.73s
964:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 5.57s
965:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 5.41s
966:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 5.24s
967:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 5.08s
968:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 4.92s
969:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 4.76s
970:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 4.59s
971:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 4.43s
972:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 33s	remaining: 4.27s
973:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 4.11s
974:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 3.95s
975:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 3.79s
976:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 3.63s
977:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 3.47s
978:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 3.31s
979:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 3.15s
980:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.99s
981:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.83s
982:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.67s
983:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.51s
984:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.35s
985:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.2s
986:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 2.04s
987:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 1.88s
988:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 1.72s
989:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 1.56s
990:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 34s	remaining: 1.41s
991:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 1.25s
992:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 1.09s
993:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 937ms
994:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 780ms
995:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 624ms
996:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 467ms
997:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 311ms
998:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 156ms
999:	learn: 0.4266650	test: 0.4263271	best: 0.4263256 (575)	total: 2m 35s	remaining: 0us

bestTest = 0.4263255838
bestIteration = 575

Shrink model to first 576 iterations.

In [106]:
prediction_proba = model.predict_proba(df_test)

In [22]:
gc.collect()


Out[22]:
4388

In [7]:
def make_submission(probs):
    sample = pd.read_csv(f'{PATH}\\AV_Stud\\sample_submission_vaSxamm.csv')
    submit = sample.copy()
    submit['is_pass'] = probs
    return submit

In [74]:
#submit = make_submission(prediction_proba[:,1]);
#submit = make_submission(preds_xgb)
submit = make_submission(new_preds)

In [75]:
submit.head(2)


Out[75]:
id is_pass
0 1626_45 0.491504
1 11020_130 0.830501

In [76]:
submit.to_csv(f'{PATH}\\AV_Stud\\nn2.csv', index=False)

xgb


In [33]:
target = df_raw['is_pass'];
df_raw.drop(['is_pass'], axis =1, inplace =True)

'''df_raw.drop(['is_pass','program_id', 'program_type', 'test_type', 'difficulty_level', 'gender',
       'education', 'is_handicapped'], inplace =True, axis =1)

df_test.drop(['program_id', 'program_type', 'test_type', 'difficulty_level', 'gender',
       'education', 'is_handicapped'], inplace =True, axis =1)
'''

cv = StratifiedKFold(n_splits=7, shuffle=True, random_state=1337)
folds = list(cv.split(df_raw, target))
x_trn, x_val, y_trn, y_val = train_test_split(df_raw, target, test_size=0.2, random_state=42, shuffle= True)
#sanity check
set(df_raw.columns) - set(df_test.columns)


Out[33]:
set()

In [7]:
def cross_val_xgb(params, X, y, folds):
    n = 1
    num_rounds = 3000
    
    list_rounds = []
    list_scores = []
    
    for train_idx, valid_idx in folds:
        print('#################################')
        print('#########  Validating for fold:', n)

        xgtrain = xgb.DMatrix(X[train_idx], label=y[train_idx])
        xgtest = xgb.DMatrix(X[valid_idx], label=y[valid_idx])

        watchlist = [ (xgtest, 'test') ]
        model = xgb.train(params, xgtrain, num_rounds, watchlist, early_stopping_rounds=50, verbose_eval=True)
        
        rounds = model.best_ntree_limit
        score = model.best_score
        
        print('\nFold', n,'- best round:', rounds)
        print('Fold', n,'- best score:', score)
        
        list_rounds.append(rounds)
        list_scores.append(score)
        n +=1
    
    mean_score = np.mean(list_scores)
    std_score = np.std(list_scores)
    mean_round = np.mean(list_rounds)
    std_round = np.std(list_rounds)
    
    print('End cross validating',n-1,'folds') #otherwise it displays 6 folds
    print("Cross Validation Scores are: ", np.round(list_scores,3))
    print("Mean CrossVal score is: ", round(mean_score,3))
    print("Std Dev CrossVal score is: ", round(std_score,3))
    print("Cross Validation early stopping rounds are: ", np.round(list_rounds,3))
    print("Mean early stopping round is: ", round(mean_round,3))
    print("Std Dev early stopping round is: ", round(std_round,3))
    
    return mean_round, model_cv

In [8]:
def runXGB(train_X, train_y, test_X, test_y=None, seed_val=1, depth = 10):
    
        params = {}
        params['booster'] = 'gbtree'
        #params['updater'] = 'coord_descent'
        params["objective"] = "binary:logistic"
        params['eval_metric'] = 'auc'
        params["eta"] = 0.05 #0.00334
        params["subsample"] = .9
        params["silent"] = 0
        params['verbose'] = 2
        params["max_depth"] = depth
        params["seed"] = seed_val
        params["max_delta_step"] = 4
        params['scale_pos_weight'] =  0.4380049934141978
        #params['alpha'] = 0.05
        params["gamma"] = 0.3
        params['colsample_bytree'] = 0.9
        num_rounds = 2000 #3600

        plst = list(params.items())
        xgtrain = xgb.DMatrix(train_X, label=train_y)
        
        if test_y is not None:
                print('1st block\n')
                xgtest = xgb.DMatrix(test_X, label=test_y)
                watchlist = [ (xgtrain,'train'), (xgtest, 'test') ]
                model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds= 50,verbose_eval=True)
        else:
                print('2nd block\n')
                xgtest = xgb.DMatrix(test_X)
                #watchlist = [ (xgtrain,'train')]
                #cv_results = xgb.cv(plst, xgtrain, num_rounds, nfold=5, stratified=True, show_stdv=False,\
                #               verbose_eval=True, folds=7, metrics=['auc', 'logloss'], early_stopping_rounds=50)
                #print('########################### model ######################\n', model)
                model = xgb.train(plst, xgtrain, num_rounds)

        pred_test_y = model.predict(xgtest,ntree_limit=model.best_ntree_limit)
        
        return pred_test_y, model, plst, model.best_ntree_limit

In [34]:
cols_not_to_be_encoded = ['program_type__program_duration','program_duration','test_id',
 'program_type__city_tier',
 'program_type__test_type',
 'program_type__difficulty_level',
 'test_id__program_duration',
 'test_id__test_type',
 'test_id_test_type__difficulty_level',
 'test_type__difficulty_level',
 'education__gender',
 'education__total_programs_enrolled',
 'gender__city_tier',
 'gender__is_handicapped',
 'education__city_tier',
 'program_level']

In [35]:
encoded_cols = ['program_type', 'test_type',
       'difficulty_level', 'gender', 'education',
       'total_programs_enrolled', 'is_handicapped',
       'trainee_engagement_rating','age_group']
df_raw = pd.get_dummies(df_raw, drop_first=True, prefix = 'one_hot', columns=encoded_cols);
df_test = pd.get_dummies(df_test, drop_first=True, prefix = 'one_hot',  columns=encoded_cols);

In [36]:
df_raw.drop(cols_not_to_be_encoded, inplace=True, axis=1);
df_test.drop(cols_not_to_be_encoded, inplace=True, axis=1);
df_test.drop('one_hot_middle_aged', axis =1, inplace=True);

In [20]:
%%time
preds_xgb, model, params, num_rounds = runXGB(df_raw, target, df_test)


2nd block

Wall time: 8min 28s

In [21]:
xgb.plot_importance(model, max_num_features=15, importance_type='weight');



In [37]:
len(df_test.columns), len(np.unique(df_test.columns))


Out[37]:
(64, 63)

In [38]:
df_test.columns.value_counts().sort_values(ascending=False)[:2]


Out[38]:
one_hot_Y      2
one_hot_2.0    1
dtype: int64

In [39]:
len(df_raw.columns), len(np.unique(df_raw.columns))


Out[39]:
(64, 63)

In [40]:
set(df_raw.columns) - set(df_test.columns)


Out[40]:
set()

In [41]:
set(df_test.columns) - set(df_raw.columns)


Out[41]:
set()

In [42]:
df_test.drop(['one_hot_Y'], axis =1, inplace=True)

In [43]:
df_raw.drop(['one_hot_Y','one_hot_60.0'], axis =1, inplace=True)

nn


In [8]:
from keras.models import Sequential
from keras.layers import Dense, BatchNormalization, Flatten, LeakyReLU, Dropout
from keras.activations import relu, softmax
from keras import metrics


Using TensorFlow backend.

In [9]:
model = Sequential()

In [10]:
df_raw.shape


Out[10]:
(73147, 56)

In [64]:
def build_model():
    model = Sequential()
    model.add(Dense(256, input_dim = df_raw.shape[1], activation = 'relu', kernel_initializer='normal'))
    model.add(Dense(128, activation = 'relu',kernel_initializer='normal'))
    model.add(BatchNormalization())
    model.add(Dense(64, activation = 'relu',kernel_initializer='normal'))
    model.add(Dropout(0.13))
    model.add(Dense(32,activation = 'relu',kernel_initializer='normal'))
    model.add(Dropout(0.1))
    model.add(Dense(16,activation = 'relu',kernel_initializer='normal'))
    model.add(Dropout(0.1))
    model.add(Dense(1,kernel_initializer='normal',activation = 'sigmoid'))
    model.compile(loss='binary_crossentropy',optimizer='rmsprop',metrics=['accuracy'],)
    return model

In [65]:
model = build_model()

In [66]:
model.summary()


_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_13 (Dense)             (None, 256)               16128     
_________________________________________________________________
dense_14 (Dense)             (None, 128)               32896     
_________________________________________________________________
batch_normalization_1 (Batch (None, 128)               512       
_________________________________________________________________
dense_15 (Dense)             (None, 64)                8256      
_________________________________________________________________
dropout_9 (Dropout)          (None, 64)                0         
_________________________________________________________________
dense_16 (Dense)             (None, 32)                2080      
_________________________________________________________________
dropout_10 (Dropout)         (None, 32)                0         
_________________________________________________________________
dense_17 (Dense)             (None, 16)                528       
_________________________________________________________________
dropout_11 (Dropout)         (None, 16)                0         
_________________________________________________________________
dense_18 (Dense)             (None, 1)                 17        
=================================================================
Total params: 60,417
Trainable params: 60,161
Non-trainable params: 256
_________________________________________________________________

In [53]:
df_test.fillna(36.,inplace=True, axis =1)

In [55]:
scaler = StandardScaler()
X_train = scaler.fit_transform(df_raw)
X_test = scaler.transform(df_test)

In [68]:
hist = model.fit(X_train,target,epochs = 25,batch_size = 32,verbose=2,validation_split=.2)


Train on 58517 samples, validate on 14630 samples
Epoch 1/25
18s - loss: 0.4988 - acc: 0.7604 - val_loss: 0.5807 - val_acc: 0.7286
Epoch 2/25
19s - loss: 0.4991 - acc: 0.7606 - val_loss: 0.5582 - val_acc: 0.7284
Epoch 3/25
20s - loss: 0.4982 - acc: 0.7599 - val_loss: 0.5757 - val_acc: 0.7273
Epoch 4/25
19s - loss: 0.4987 - acc: 0.7621 - val_loss: 0.5838 - val_acc: 0.7242
Epoch 5/25
18s - loss: 0.4977 - acc: 0.7615 - val_loss: 0.5657 - val_acc: 0.7295
Epoch 6/25
17s - loss: 0.4982 - acc: 0.7606 - val_loss: 0.6031 - val_acc: 0.7240
Epoch 7/25
17s - loss: 0.4963 - acc: 0.7625 - val_loss: 0.5677 - val_acc: 0.7267
Epoch 8/25
22s - loss: 0.4948 - acc: 0.7633 - val_loss: 0.5718 - val_acc: 0.7245
Epoch 9/25
17s - loss: 0.4953 - acc: 0.7640 - val_loss: 0.5769 - val_acc: 0.7282
Epoch 10/25
18s - loss: 0.4948 - acc: 0.7629 - val_loss: 0.5622 - val_acc: 0.7298
Epoch 11/25
17s - loss: 0.4929 - acc: 0.7660 - val_loss: 0.6058 - val_acc: 0.7267
Epoch 12/25
17s - loss: 0.4935 - acc: 0.7634 - val_loss: 0.5789 - val_acc: 0.7279
Epoch 13/25
26s - loss: 0.4912 - acc: 0.7660 - val_loss: 0.6050 - val_acc: 0.7308
Epoch 14/25
17s - loss: 0.4894 - acc: 0.7673 - val_loss: 0.6184 - val_acc: 0.7167
Epoch 15/25
18s - loss: 0.4917 - acc: 0.7669 - val_loss: 0.5823 - val_acc: 0.7257
Epoch 16/25
28s - loss: 0.4896 - acc: 0.7668 - val_loss: 0.5870 - val_acc: 0.7214
Epoch 17/25
18s - loss: 0.4914 - acc: 0.7642 - val_loss: 0.5996 - val_acc: 0.7274
Epoch 18/25
17s - loss: 0.4901 - acc: 0.7663 - val_loss: 0.6038 - val_acc: 0.7290
Epoch 19/25
22s - loss: 0.4882 - acc: 0.7665 - val_loss: 0.6187 - val_acc: 0.7264
Epoch 20/25
17s - loss: 0.4883 - acc: 0.7685 - val_loss: 0.5952 - val_acc: 0.7306
Epoch 21/25
17s - loss: 0.4882 - acc: 0.7676 - val_loss: 0.6034 - val_acc: 0.7271
Epoch 22/25
30s - loss: 0.4903 - acc: 0.7668 - val_loss: 0.6088 - val_acc: 0.7261
Epoch 23/25
24s - loss: 0.4912 - acc: 0.7661 - val_loss: 0.6092 - val_acc: 0.7137
Epoch 24/25
17s - loss: 0.4906 - acc: 0.7683 - val_loss: 0.5907 - val_acc: 0.7267
Epoch 25/25
21s - loss: 0.4901 - acc: 0.7678 - val_loss: 0.5906 - val_acc: 0.7255

In [69]:
preds = model.predict_proba(X_test)


31349/31349 [==============================] - ETA: 61 - ETA: 6 - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - ETA:  - 2s     

In [70]:
# serialize model to JSON
model_json = model.to_json()
with open(f'{PATH}\\AV_Stud\\model.json', "w") as json_file:
    json_file.write(model_json)
# serialize weights to HDF5
model.save_weights(f"{PATH}\\AV_Stud\\model.h5")
print("Saved model to disk")


Saved model to disk

load json and create model json_file = open('model.json', 'r')

loaded_model_json = json_file.read()

json_file.close()

loaded_model = model_from_json(loaded_model_json)

load weights into new model

loaded_model.load_weights("model.h5")

print("Loaded model from disk")

evaluate loaded model on test data

loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])

score = loaded_model.evaluate(X, Y, verbose=0)

print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))


In [71]:
preds[12]


Out[71]:
array([ 0.87713], dtype=float32)

In [72]:
new_preds = []

In [73]:
for i in range(df_test.shape[0]):
    new_preds.append(preds[i][0])

In [ ]: