In [1]:
# load the package
include("../FractionalFlow/FractionalFlow.jl")
using PyPlot, SetPyPlot, NLopt, Dierckx
import Calculus
import GR
FF = FractionalFlow


Out[1]:
FractionalFlow

Water-flooding


In [3]:
# define the problem
# relative permeabilities
rel_perms = FF.oil_water_rel_perms(krw0=0.4, kro0=0.9, 
    swc=0.15, sor=0.2, nw=2.0, no = 2.0)
# FF.visualize(rel_perms)
# define the fluids
fluids = FF.oil_water_fluids(mu_water=1e-3, mu_oil=1e-3)

# define the fractional flow functions
fw, dfw = FF.fractional_flow_function(rel_perms, fluids)
# visualize the fractional flow
# FF.visualize(rel_perms, fluids, label="lowsal")
# tight_layout()
core_flood = FF.core_flooding(u_inj=1.15e-5, pv_inject=5, 
    p_back=1e5, sw_init=0.2, sw_inj=1.0, rel_perms=rel_perms)
core_props = FF.core_properties()
wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
fw, dfw = FF.fractional_flow_function(rel_perms, fluids)
sw_tmp = linspace(0,1,100)

FF.visualize(wf_res)


Out[3]:
PyObject <matplotlib.legend.Legend object at 0x7f160f3a1450>

In [4]:
# t_sec, pv, rec_fact, dp_core, x, sw, c, c_out_sal=
#             FF.water_flood_numeric(core_props, fluids, rel_perms, core_flood)

In [5]:
# figure()
# plot(t_sec, rec_fact, "o", wf_res.recovery_time[:,1], wf_res.recovery_time[:,2])
# figure()
# plot(t_sec, dp_core, "o", wf_res.dp_time[:,1], wf_res.dp_time[:,2])

synthetic experimental data


In [6]:
t_exp_dp = wf_res.dp_time[:,1]
dp_exp = wf_res.dp_time[:,2]
t_exp_R = wf_res.recovery_time[:,1]
R_exp = wf_res.recovery_time[:,2]
plotyy(t_exp_R, R_exp, t_exp_dp, dp_exp, fig_size = [8,5], x_label="time [s]", y1_label="R [-]", y2_label="dP [Pa]")


Out[6]:
(PyPlot.Figure(PyObject <Figure size 800x500 with 2 Axes>), PyObject <matplotlib.axes._subplots.AxesSubplot object at 0x7f160ea2db50>, PyObject <matplotlib.axes._subplots.AxesSubplot object at 0x7f160e95de50>)

define the objective function


In [7]:
# struct
struct exp_data
    t_exp_dp
    dp_exp
    t_exp_R
    R_exp
end
exp_data1 = exp_data(t_exp_dp, dp_exp, t_exp_R, R_exp)


Out[7]:
exp_data(Real[0.0, 98.3177, 196.635, 294.953, 393.271, 491.588, 589.906, 688.224, 786.541, 884.859  …  18680.4, 18778.7, 18877.0, 18975.3, 19073.6, 19171.9, 19270.3, 19368.6, 19466.9, 19565.2], Real[2242.5, 2382.13, 2512.99, 2643.84, 2792.52, 2923.33, 3054.15, 3202.83, 3333.64, 3464.46  …  4436.68, 4436.06, 4435.44, 4434.84, 4434.23, 4433.64, 4433.05, 4432.46, 4431.88, 4431.31], Real[0.0, 98.3177, 196.635, 294.953, 393.271, 491.588, 589.906, 688.224, 786.541, 884.859  …  18680.4, 18778.7, 18877.0, 18975.3, 19073.6, 19171.9, 19270.3, 19368.6, 19466.9, 19565.2], Real[0.0, 0.0319038, 0.0622777, 0.092653, 0.126059, 0.156438, 0.186816, 0.220222, 0.250601, 0.28098  …  0.738372, 0.73843, 0.738487, 0.738544, 0.7386, 0.738655, 0.73871, 0.738765, 0.738819, 0.738872])

In [17]:
"""
rel_perm_param [krw0, kro0, nw, no, swc, sor]
"""
function error_calc(rel_perm_param, exp_data, core_props, fluids, core_flood; w_p=1.0, w_R=1.0)
    rel_perms = FF.oil_water_rel_perms(krw0=rel_perm_param[1], kro0=rel_perm_param[2], 
    swc=rel_perm_param[5], sor=rel_perm_param[6], nw=rel_perm_param[3], no = rel_perm_param[4])
    wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
    dp_calc = Spline1D(wf_res.dp_time[:,1], wf_res.dp_time[:,2], k=1, bc="nearest")
    R_calc = Spline1D(wf_res.recovery_time[:,1], wf_res.recovery_time[:,2], k=1, bc="nearest")
    error_dp = abs.(dp_calc(exp_data.t_exp_dp) .- exp_data.dp_exp)
#     println(error_dp)
    error_R = abs.(R_calc(exp_data.t_exp_R) .- exp_data.R_exp)
#     println(error_R)
    error_dp_norm = w_p.*error_dp./exp_data.dp_exp
    error_R_norm = w_R.*error_R./(exp_data.R_exp+eps())
    return mean(error_R_norm)+mean(error_dp_norm)
end

function vis_error(rel_perm_param, exp_data, core_props, fluids, core_flood)
    rel_perms = FF.oil_water_rel_perms(krw0=rel_perm_param[1], kro0=rel_perm_param[2], 
    swc=rel_perm_param[5], sor=rel_perm_param[6], nw=rel_perm_param[3], no = rel_perm_param[4])
    wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
    figure()
    plot(wf_res.dp_time[:,1], wf_res.dp_time[:,2],  exp_data.t_exp_dp, exp_data.dp_exp, "o")
    xlabel("t [s]")
    ylabel("dp [Pa]")
    legend(["Theoretical", "Experiment"])
    
    figure()
    plot(wf_res.recovery_time[:,1], wf_res.recovery_time[:,2], exp_data.t_exp_R, exp_data.R_exp, "v")
    xlabel("t [s]")
    ylabel("R [-]")
    legend(["Theoretical", "Experiment"])
    
end

# test
x_init = [0.109681, 0.201297, 3.96653, 3.0, 0.19, 0.262231]

vis_error(x_init, exp_data1, core_props, fluids, core_flood)
error_calc(x_init, exp_data1, core_props, fluids, core_flood)


Out[17]:
4.5764245794858045

define the objective function and gradients and weight factors


In [21]:
# weight factors:
w_p = ones(length(exp_data1.dp_exp))
ind_max = indmax(exp_data1.dp_exp)
w_p[ind_max-1:ind_max+2] = 10
w_p[end:end-5]=10
w_p[1]=10
w_R = ones(length(exp_data1.R_exp))
w_R[20:25] = 10
w_R[end:end-5]=10


function f(x)
    f_val = 0.0
    try
        f_val = error_calc(x, exp_data1, core_props, fluids, core_flood, w_p = w_p, w_R = w_R)
    catch
        f_val = 100.0
#         info("Objective function did not converge!")
    end
    return f_val
end

    
function g(x)
    eps1 = 1e-4
    f_val = f(x)
    g_val = ones(length(x))
    try
        # g_val = Calculus.gradient(x -> error_calc(x, exp_data1, core_props, fluids, core_flood), x)
        for j in eachindex(x)
            x2 = copy(x)
            x2[j]+=eps1
            f_val2 = f(x2)
            g_val[j] = (f_val2-f_val)/eps1
        end
    catch
        g_val = ones(length(x))
    end
    return g_val
end

function obj_fun(param, grad)
    if length(grad)>0
      grad[:] = g(param)
    end
    
    obj_fun_val = f(param)
    if isnan(obj_fun_val) || isinf(obj_fun_val)
        obj_fun_val = 100.0
    end
    return obj_fun_val
end

# test
grad_x = zeros(6)
obj_fun([1.0, 0.8, 3, 4, 0.2, 0.2], grad_x)

f([1.0, 0.8, 2, 2, 0.1, 0.2])


Out[21]:
0.7313682251349136

In [13]:
grad_x


Out[13]:
6-element Array{Float64,1}:
 285.858      
 285.489      
 285.478      
  -0.000124841
  -0.541958   
 286.999      

In [11]:
## algorithms
# L: Local, G:global
# D: derivative-based, N: non-derivative (search-based)

# :LD_MMA
# :LN_COBYLA
# :LD_LBFGS
# :GN_DIRECT
# :GN_DIRECT_L
# GN_CRS2_LM
# G_MLSL_LDS
# GD_STOGO
# GN_ISRES
# GN_ESCH
# LN_NEWUOA_BOUND
# LN_BOBYQA
# LN_PRAXIS
# LN_NELDERMEAD
# LN_SBPLX
# LD_SLSQP
# LD_TNEWTON_PRECOND_RESTART
# LD_TNEWTON_RESTART
# LD_TNEWTON_PRECOND

In [22]:
x_init = [0.9, 0.8, 2.5, 2.5, 0.1, 0.1]
x_lb = [0.1, 0.1, 1.5, 1.5, 0.05, 0.1]
x_ub = [1.0, 1.0, 4.0, 4.0, core_flood.initial_water_saturation, 0.25]
opt_alg=:GN_DIRECT_L
opt1 = Opt(opt_alg, length(x_init)) # choose the algorithm
lower_bounds!(opt1, x_lb)
upper_bounds!(opt1, x_ub)
ftol_rel!(opt1, 1e-15)
ftol_abs!(opt1, 1e-15)

min_objective!(opt1, obj_fun)
(fObjOpt, paramOpt, flag) = optimize(opt1, x_init)


Out[22]:
(0.04651698487816377, [0.435141, 0.994858, 2.61269, 2.33365, 0.166793, 0.182849], :FTOL_REACHED)

In [23]:
x_init = paramOpt
vis_error(x_init, exp_data1, core_props, fluids, core_flood)
error_calc(x_init, exp_data1, core_props, fluids, core_flood)


Out[23]:
0.027535146902259448

In [38]:
rel_perm_param=[1.0, 0.8, 3, 4, 0.2, 0.2]
rel_perms2 = FF.oil_water_rel_perms(krw0=rel_perm_param[1], kro0=rel_perm_param[2], 
    swc=rel_perm_param[5], sor=rel_perm_param[6], nw=rel_perm_param[3], no = rel_perm_param[4])
FF.visualize(rel_perms2, fluids)


Out[38]:
PyObject <matplotlib.legend.Legend object at 0x7f15558edb50>