In [1]:
# load the package
include("../FractionalFlow/FractionalFlow.jl")
using PyPlot, SetPyPlot, Dierckx, Statistics, NLopt
import Calculus
import GR
FF = FractionalFlow
Out[1]:
In [2]:
# define the problem
# relative permeabilities
rel_perms = FF.oil_water_rel_perms(krw0=0.4, kro0=0.9,
swc=0.15, sor=0.2, nw=2.0, no = 2.0)
# FF.visualize(rel_perms)
# define the fluids
fluids = FF.oil_water_fluids(mu_water=1e-3, mu_oil=1e-3)
# define the fractional flow functions
fw, dfw = FF.fractional_flow_function(rel_perms, fluids)
# visualize the fractional flow
# FF.visualize(rel_perms, fluids, label="lowsal")
# tight_layout()
ut = 1.15e-5
phi = 0.3
L = 0.15
core_flood = FF.core_flooding(u_inj=1.15e-5, pv_inject=5,
p_back=1e5, sw_init=0.2, sw_inj=1.0, rel_perms=rel_perms)
core_props = FF.core_properties()
wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
fw, dfw = FF.fractional_flow_function(rel_perms, fluids)
sw_tmp = FF.linspace(0,1,100)
FF.visualize(wf_res)
Out[2]:
In [3]:
t_sec, pv, rec_fact, dp_core, x, sw_face, c_face, c_out_sal=FF.water_flood_numeric(core_props, fluids, rel_perms, core_flood, Nx=50)
Out[3]:
In [4]:
t_exp_dp = wf_res.dp_time[:,1]
dp_exp = wf_res.dp_time[:,2]
t_exp_R = wf_res.recovery_time[:,1]
R_exp = wf_res.recovery_time[:,2]
plotyy(t_exp_R, R_exp, t_exp_dp, dp_exp, fig_size = [8,5], x_label="time [s]", y1_label="R [-]", y2_label="dP [Pa]")
Out[4]:
In [5]:
plot(t_exp_dp, dp_exp, "o", t_sec, dp_core)
legend(["Analytical", "Numerical"])
Out[5]:
In [6]:
# struct
struct exp_data
t_exp_dp
dp_exp
t_exp_R
R_exp
end
exp_data1 = exp_data(t_exp_dp, dp_exp, t_exp_R, R_exp);
Out[6]:
The optimizer needs to provide two different time series to the objective function: the first time series is for the recovery factor and the second one is for the pressure drops. There is no parameter that indicates the end of the first time series, but it can be easily inferred from the jump to zero. One other trick is to just supply the data inside the objective function and accept the time series as a dummy input variable.
In [7]:
"""
rel_perm_param [krw0, kro0, nw, no, swc, sor]
"""
function error_calc(rel_perm_param, exp_data, core_props, fluids, core_flood; w_p=1.0, w_R=1.0)
rel_perms = FF.oil_water_rel_perms(krw0=rel_perm_param[1], kro0=rel_perm_param[2],
swc=rel_perm_param[5], sor=rel_perm_param[6], nw=rel_perm_param[3], no = rel_perm_param[4])
wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
dp_calc = Spline1D(wf_res.dp_time[:,1], wf_res.dp_time[:,2], k=1, bc="nearest")
R_calc = Spline1D(wf_res.recovery_time[:,1], wf_res.recovery_time[:,2], k=1, bc="nearest")
error_dp = abs.(dp_calc(exp_data.t_exp_dp) .- exp_data.dp_exp)
# println(error_dp)
error_R = abs.(R_calc(exp_data.t_exp_R) .- exp_data.R_exp)
# println(error_R)
error_dp_norm = w_p.*error_dp./exp_data.dp_exp
error_R_norm = w_R.*error_R./(exp_data.R_exp.+eps())
return error_R_norm, error_dp_norm
end
function value_calc(rel_perm_param, exp_data, core_props, fluids, core_flood)
rel_perms = FF.oil_water_rel_perms(krw0=rel_perm_param[1], kro0=rel_perm_param[2],
swc=rel_perm_param[5], sor=rel_perm_param[6], nw=rel_perm_param[3], no = rel_perm_param[4])
wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
dp_calc = Spline1D(wf_res.dp_time[:,1], wf_res.dp_time[:,2], k=1, bc="nearest")
R_calc = Spline1D(wf_res.recovery_time[:,1], wf_res.recovery_time[:,2], k=1, bc="nearest")
return dp_calc(exp_data.t_exp_dp), R_calc(exp_data.t_exp_R)
end
function vis_error(rel_perm_param, exp_data, core_props, fluids, core_flood)
rel_perms = FF.oil_water_rel_perms(krw0=rel_perm_param[1], kro0=rel_perm_param[2],
swc=rel_perm_param[5], sor=rel_perm_param[6], nw=rel_perm_param[3], no = rel_perm_param[4])
wf_res = FF.water_flood(core_props, fluids, rel_perms, core_flood)
figure()
plot(wf_res.dp_time[:,1], wf_res.dp_time[:,2], exp_data.t_exp_dp, exp_data.dp_exp, "o")
xlabel("t [s]")
ylabel("dp [Pa]")
legend(["Theoretical", "Experiment"])
figure()
plot(wf_res.recovery_time[:,1], wf_res.recovery_time[:,2], exp_data.t_exp_R, exp_data.R_exp, "v")
xlabel("t [s]")
ylabel("R [-]")
legend(["Theoretical", "Experiment"])
end
function obj_lsq(t, rel_perm_param)
R_er, dp_er = error_calc(rel_perm_param, exp_data1, core_props, fluids, core_flood)
return [R_er; dp_er]
end
# test
x_init = [0.109681, 0.201297, 3.96653, 3.0, 0.19, 0.262231]
vis_error(x_init, exp_data1, core_props, fluids, core_flood)
error_calc(x_init, exp_data1, core_props, fluids, core_flood)
Out[7]:
In [ ]:
fit = curve_fit(obj_lsq, xdata, ydata, p0)
In [23]:
# weight factors:
w_p = ones(length(exp_data1.dp_exp))
temp_val, ind_max = findmax(exp_data1.dp_exp)
println(ind_max)
w_p[ind_max-3:ind_max+3] .= 10
w_p[end-10:end] .= 10
w_p[1]=10
w_R = ones(length(exp_data1.R_exp))
w_R[20:25] .= 10
w_R[end-3:end] .= 10
function f(x)
f_val = 0.0
try
f_val = error_calc(x, exp_data1, core_props, fluids, core_flood, w_p = w_p, w_R = w_R)
catch
f_val = 100.0
# info("Objective function did not converge!")
end
return f_val
end
function g(x)
eps1 = 1e-3
f_val = f(x)
g_val = ones(length(x))
try
# g_val = Calculus.gradient(x -> error_calc(x, exp_data1, core_props, fluids, core_flood), x)
for j in eachindex(x)
x2 = copy(x)
x2[j]+=eps1
f_val2 = f(x2)
g_val[j] = (f_val2-f_val)/eps1
end
catch
g_val = ones(length(x))
end
return g_val
end
function obj_fun(param, grad)
if length(grad)>0
grad[:] = g(param)
end
obj_fun_val = f(param)
if isnan(obj_fun_val) || isinf(obj_fun_val)
obj_fun_val = 100.0
end
return obj_fun_val
end
# test
grad_x = zeros(6)
obj_fun([1.0, 0.8, 3, 4, 0.2, 0.2], grad_x)
f([1.0, 0.8, 2, 2, 0.1, 0.2])
Out[23]:
In [9]:
grad_x
Out[9]:
In [10]:
## algorithms
# L: Local, G:global
# D: derivative-based, N: non-derivative (search-based)
# :LD_MMA
# :LN_COBYLA
# :LD_LBFGS
# :GN_DIRECT
# :GN_DIRECT_L
# GN_CRS2_LM
# G_MLSL_LDS
# GD_STOGO
# GN_ISRES
# GN_ESCH
# LN_NEWUOA_BOUND
# LN_BOBYQA
# LN_PRAXIS
# LN_NELDERMEAD
# LN_SBPLX
# LD_SLSQP
# LD_TNEWTON_PRECOND_RESTART
# LD_TNEWTON_RESTART
# LD_TNEWTON_PRECOND
In [24]:
x_init = [0.9, 0.8, 2.5, 2.5, 0.1, 0.1]
x_lb = [0.1, 0.1, 1.5, 1.5, 0.05, 0.1]
x_ub = [1.0, 1.0, 4.0, 4.0, core_flood.initial_water_saturation, 0.25]
opt_alg=:LD_SLSQP
opt1 = Opt(opt_alg, length(x_init)) # choose the algorithm
lower_bounds!(opt1, x_lb)
upper_bounds!(opt1, x_ub)
ftol_rel!(opt1, 1e-15)
ftol_abs!(opt1, 1e-15)
min_objective!(opt1, obj_fun)
(fObjOpt, paramOpt, flag) = optimize(opt1, x_init)
Out[24]:
In [25]:
x_init = paramOpt
vis_error(x_init, exp_data1, core_props, fluids, core_flood)
error_calc(x_init, exp_data1, core_props, fluids, core_flood)
Out[25]: