In [ ]:
%matplotlib inline
In [ ]:
print(__doc__)
import sys
from skopt.plots import plot_objective
from skopt import forest_minimize
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from skopt.space import Integer, Categorical
from skopt import plots, gp_minimize
from skopt.plots import plot_objective
In [ ]:
def objective(params):
clf = DecisionTreeClassifier(
**{dim.name: val for dim, val in
zip(SPACE, params) if dim.name != 'dummy'})
return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))
In [ ]:
SPACE = [
Integer(1, 20, name='max_depth'),
Integer(2, 100, name='min_samples_split'),
Integer(5, 30, name='min_samples_leaf'),
Integer(1, 30, name='max_features'),
Categorical(list('abc'), name='dummy'),
Categorical(['gini', 'entropy'], name='criterion'),
Categorical(list('def'), name='dummy'),
]
result = gp_minimize(objective, SPACE, n_calls=20)
In [ ]:
_ = plot_objective(result, n_points=10)
Here we plot without partial dependence. We see that it is a lot faster. Also the values for the other parameters are set to the default "result" which is the parameter set of the best observed value so far. In the case of funny_func this is close to 0 for all parameters.
In [ ]:
_ = plot_objective(result, sample_source='result', n_points=10)
Here we try with setting the other parameters to something other than
"result". When dealing with categorical dimensions we can't use
'expected_minimum'. Therefore we try with "expected_minimum_random"
which is a naive way of finding the minimum of the surrogate by only
using random sampling. n_minimum_search
sets the number of random samples,
which is used to find the minimum
In [ ]:
_ = plot_objective(result, n_points=10, sample_source='expected_minimum_random',
minimum='expected_minimum_random', n_minimum_search=10000)
In [ ]:
_ = plot_objective(result, n_points=10, sample_source=[15, 4, 7, 15, 'b', 'entropy', 'e'],
minimum=[15, 4, 7, 15, 'b', 'entropy', 'e'])