In [38]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:
$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r d\theta dr$$Write a function integrate_polar(f, rmax)
that performs this integral numerically using scipy.integrate.dblquad
.
In [37]:
integrate.dblquad?
In [39]:
def integrate_polar(f, rmax):
"""Integrate the function f(r, theta) over r=[0,rmax], theta=[0,2*np.pi]"""
F=lambda r,t:f(r,t)*r
def t1(t):
return 0*t
def t2(t):
return rmax
I,e=integrate.dblquad(F,0,2*np.pi,t1,t2)
return I
In [40]:
assert np.allclose(integrate_polar(lambda r,t: 1, 1.0), np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)
In [ ]: