In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
%load_ext autoreload
%autoreload 2
In [2]:
np.random.seed(10)
p, q = (np.random.rand(i, 2) for i in (4, 5))
p_big, q_big = (np.random.rand(i, 80) for i in (100, 120))
print(p, "\n\n", q)
In [3]:
def naive(p, q):
result = np.zeros((p.shape[0], q.shape[0]))
for i in range(p.shape[0]):
for j in range(q.shape[0]):
tmp = 0
for k in range(p.shape[1]):
tmp += (p[i,k]-q[j,k])**2
result[i,j] = tmp
return np.sqrt(result)
In [4]:
def naive_2(p, q):
result = np.zeros((p.shape[0], q.shape[0]))
for i in range(p.shape[0]):
for j in range(q.shape[0]):
result[i,j] = np.sum((p[i]-q[j])**2)
return np.sqrt(result)
In [5]:
rows, cols = np.indices((p.shape[0], q.shape[0]))
print(rows, end='\n\n')
print(cols)
In [6]:
print(p[rows.ravel()], end='\n\n')
print(q[cols.ravel()])
In [7]:
def with_indices(p, q):
rows, cols = np.indices((p.shape[0], q.shape[0]))
distances = np.sqrt(np.sum((p[rows.ravel(), :] - q[cols.ravel(), :])**2, axis=1))
return distances.reshape((p.shape[0], q.shape[0]))
In [8]:
def with_indices_2(p, q):
rows, cols = np.indices((p.shape[0], q.shape[0]))
distances = np.sqrt(np.sum((p[rows, :] - q[cols, :])**2, axis=2))
return distances
In [9]:
from scipy.spatial.distance import cdist
def scipy_version(p, q):
return cdist(p, q)
In [10]:
def tensor_broadcasting(p, q):
return np.sqrt(np.sum((p[:,np.newaxis,:]-q[np.newaxis,:,:])**2, axis=2))
In [11]:
methods = [naive, naive_2, with_indices, with_indices_2, scipy_version, tensor_broadcasting]
timers = []
for f in methods:
r = %timeit -o f(p_big, q_big)
timers.append(r)
In [12]:
plt.figure(figsize=(10,6))
plt.bar(np.arange(len(methods)), [r.best*1000 for r in timers], log=False) # Set log to True for logarithmic scale
plt.xticks(np.arange(len(methods))+0.2, [f.__name__ for f in methods], rotation=30)
plt.xlabel('Method')
plt.ylabel('Time (ms)')
plt.show()
Out[12]:
In [ ]: