In [1]:
    
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
%load_ext autoreload
%autoreload 2
    
In [2]:
    
num_samples, num_features = 10, 5
    
In [3]:
    
np.random.seed(10)
data = np.random.rand(num_samples, num_features)
    
In [4]:
    
print(data)
    
    
In [5]:
    
np.mean(data, axis=0)
    
    Out[5]:
In [6]:
    
centered_data = data - np.mean(data, axis=0)
    
In [7]:
    
std_data = centered_data / np.std(centered_data, axis=0)
    
In [8]:
    
print(std_data, "\n\n", np.mean(std_data, axis=0), "\n\n", np.std(std_data, axis=0))
    
    
In [ ]: