Algorithms Exercise 2

Imports


In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np

Peak finding

Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:

  • Properly handle local maxima at the endpoints of the input array.
  • Return a Numpy array of integer indices.
  • Handle any Python iterable as input.

In [2]:
def find_peaks(a):
    """Find the indices of the local maxima in a sequence."""
    peaks = []
    for i in range(len(a)):
        if i==0:
            if a[i]>a[i+1]:
                peaks.append(i)
        elif i!=0 and i!=len(a)-1:
            if a[i]>a[i-1] and a[i]>a[i+1]:
                peaks.append(i)
        elif i==len(a)-1:
            if a[i]>a[i-1]:
                peaks.append(i)
    return peaks

In [3]:
a = [2,0,1,0,2,0,1]
p1 = find_peaks(a)
print(p1)


[0, 2, 4, 6]

In [4]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))

Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:

  • Convert that string to a Numpy array of integers.
  • Find the indices of the local maxima in the digits of $\pi$.
  • Use np.diff to find the distances between consequtive local maxima.
  • Visualize that distribution using an appropriately customized histogram.

In [5]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]

In [6]:
pi_list = []
for i in range(len(pi_digits_str)):
    pi_list.append(int(pi_digits_str[i]))
pi_array = np.array(pi_list)

In [7]:
pi_peaks = find_peaks(pi_array)

In [8]:
pi_diff = np.diff(pi_peaks)

In [9]:
max(pi_diff)


Out[9]:
18

In [10]:
list(np.arange(2,11))


Out[10]:
[2, 3, 4, 5, 6, 7, 8, 9, 10]

In [11]:
g = plt.figure(figsize=(6,6))
plt.hist(pi_diff, bins=max(pi_diff)+1, range=(.5,max(pi_diff)+1.5))
plt.xlim(1.5,12.5)
plt.xticks(np.arange(2,13))
plt.xlabel('Distance Between Peaks')
plt.ylabel('Count')
plt.title('Distance Between Maxima for the First 10,000 Digits of Pi');



In [12]:
assert True # use this for grading the pi digits histogram