Project Euler: Problem 6

https://projecteuler.net/problem=6

The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + ... + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1 + 2 + ... + 10)^2 = 552 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.


In [7]:
sqr_hund = []
sum_hund = 0
for i in range(1, 101):
    sum_hund += i
    sqr_hund.append(i**2)
sum_sqr_hund = sum(sqr_hund)
sqr_sum_hund = sum_hund**2

print(sqr_sum_hund - sum_sqr_hund)


25164150

In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.